Back to browse results
Space-time smoothing of complex survey data: Small area estimation for child mortality
Authors: Laina D. Mercer, Jon Wakefield, Athena Pantazis, Angelina M. Lutambi, Honorati Masanja, and Samuel Clark
Source: The Annals of Applied Statistics, 9(4):1889–1905, DOI: 10.1214/15-AOAS872
Topic(s): Childhood mortality
Country: Africa
Published: MAY 2015
Abstract: Many people living in low- and middle-income countries are not covered by civil registration and vital statistics systems. Consequently, a wide variety of other types of data, including many household sample surveys, are used to estimate health and population indicators. In this paper we combine data from sample surveys and demographic surveillance systems to produce small area estimates of child mortality through time. Small area estimates are necessary to understand geographical heterogeneity in health indicators when full-coverage vital statistics are not available. For this endeavor spatiotemporal smoothing is beneficial to alleviate problems of data sparsity. The use of conventional hierarchical models requires careful thought since the survey weights may need to be considered to alleviate bias due to nonrandom sampling and nonresponse. The application that motivated this work is an estimation of child mortality rates in five-year time intervals in regions of Tanzania. Data come from Demographic and Health Surveys conducted over the period 1991–2010 and two demographic surveillance system sites.We derive a variance estimator of under five years child mortality that accounts for the complex survey weighting. For our application, the hierarchical models we consider include random effects for area, time and survey and we compare models using a variety of measures including the conditional predictive ordinate (CPO). The method we propose is implemented via the fast and accurate integrated nested Laplace approximation (INLA).