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PREFACE 

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data 
on fertility, family planning, maternal and child health, nutrition, mortality, environmental health, 
HIV/AIDS, malaria, and provision of health services. 

The DHS Spatial Analysis Reports supplement the other series of DHS reports that respond to the increasing 
interest in a spatial perspective on demographic and health data. The principal objectives of all the DHS 
report series are to provide information for policy formulation at the international level and to examine 
individual country results in an international context. 

The topics in this series are selected by The DHS Program in consultation with the U.S. Agency for 
International Development. A range of methodologies are used, including geostatistical and multivariate 
statistical techniques. 

It is hoped that the DHS Spatial Analysis Reports series will be useful to researchers, policymakers, and 
survey specialists, particularly those engaged in work in low- and middle-income countries, and will be 
used to enhance the quality and analysis of survey data. 

 

Sunita Kishor 
Director, The DHS Program 
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ABSTRACT 

Over the last several years and within the framework of the Sustainable Development Goals, there has been 
a need to improve the measurement and understanding of local geographic patterns to support more 
decentralized decision-making and more efficient program implementation. This requires more 
disaggregated data that are not currently available in a nationally representative household survey. The 
spatial modeling techniques that leverage existing survey data, spatial relationships between survey 
clusters, and relationships with geospatial covariates have become increasingly popular for mapping key 
development indicators at high spatial resolution. 

This study explores the potential of model-based geostatistics methodology to model DHS survey 
indicators. We implement a stacked ensemble modeling approach that combines multiple model algorithmic 
methods to increase predictive validity relative to a single modeling. The approach captures potentially 
complex interactions and non-linear effects among the geospatial covariates. Three submodels are fitted to 
six DHS indicator survey data using the geospatial covariates as exploratory predictors. The model 
prediction surfaces generated from the submodels are used as covariates in the final Bayesian geostatistical 
model, which is implemented through a stochastic partial differential equation approach in the integrated 
nested Laplace approximations. To explore the ability of our modeling approach to estimate indicators 
below the first subnational level, pixel-level estimates generated from the Bayesian model were aggregated 
to the second subnational level by using the population-weighted average within the administrative 
boundary. 

Results of the individual submodels vary spatially, which is explained by the uncertainties in the individual 
model algorithm. The use of an ensemble model approach seems more adequate than relying on predictions 
from any single modeling method. We demonstrate the predictive ability of the model at the second 
administrative level using cross-validation. The results indicate good predictive performance. 

The proposed approach can help to inform the allocation of resources and program implementation in areas 
that need more attention. Countries can use this approach to model other DHS survey indicators at much 
smaller spatial scales. 
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1 BACKGROUND AND OBJECTIVES 

1.1 Background 

The Demographic and Health Surveys (DHS) Program has been a leader in collecting and providing cluster-
randomized survey data on various development and health indicators. In addition to the standard open-
source data files in which household and individual survey results can be tabulated by first-order 
subnational units (states/provinces or regions) and urban/rural strata, more surveys are now providing 
georeferenced data for individual clusters. The availability of the Global Positioning System (GPS) 
coordinates for DHS, the Malaria Indicator Survey (MIS), and the AIDS Indicator Survey (AIS) clusters 
provides highly local scale information that can be linked with survey outputs for quantifying demographic 
and health status heterogeneities and inequities. 

During the last several years and within the framework of the Sustainable Development Goals (SDGs), 
there has been an expressed need to improve the measurement and understanding of local geographic 
patterns in order to support more decentralized decision-making and more efficient program 
implementation (United Nations General Assembly 2015). This requires additional disaggregated data that 
are not currently available in a nationally representative household survey. 

Analyses of the DHS survey indicators are conducted primarily at the national level, but also at the first 
subnational administrative level (ADMIN 1). Since estimates produced at the national level are more useful 
for making comparisons between nations and aggregating across large world regions, their natural audience 
includes international policymakers and donors (Li et al. 2019). However, the ADMIN 1 analysis does not 
provide comprehensive estimates at lower levels, such as the second subnational administrative level 
(ADMIN 2), where health programs are designed and implemented. 

To better address the need for fine spatial and lower level estimates, there are three possible options: 

(1) Scaling-up the nationally representative survey data collection process by increasing the sample 
size, survey costs, and survey time to create a representative sample at the desired administrative 
level. 

(2) Using data derived from routine health management information systems (HMIS) from health 
facilities, communities, census, or other household surveys, such as data that can determine the 
vaccination coverage in a district. 

(3) Creating spatially interpolated maps that use modeling techniques to predict values at non-surveyed 
locations. 

Increasing DHS survey sample size to enable increased geographic disaggregation is both time consuming 
and expensive. Thus, the first option may not be feasible in an increasingly resource-constrained 
environment. With the second option, HMIS data quality is not always reliable, and the data are not easily 
accessed. The third option, which uses spatial modeling techniques that leverage existing survey data, 
spatial relationships between survey clusters, and relationships with geospatial covariates, has become 
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increasingly popular in mapping key development indicators at high spatial resolution (Utazi et al. 2018; 
Gething and Burgert-Brucker 2017). 

The Bayesian spatial approach is increasingly recognized as an excellent geostatistical analysis method for 
addressing uncertainty in the model estimates (predictions) and for being flexible and capable of handling 
missing data (Cressie and Wikle 2011). This approach has been widely used to predict and map various 
indicators such as those described in SAR 11 (Gething et al. 2015), poverty (Steele et al. 2017), and malaria 
(Gething et al. 2011; Gosoniu et al. 2006; Gosoniu et al. 2012; Gosoniu, Veta, and Vounatsou 2011; 
Kazembe et al. 2006; Raso et al. 2012, Riedel et al. 2011; Hay et al. 2009). In these studies, environmental 
data layers that are thought to influence the indicators are used to explain some of the variations in 
prevalence across different areas. This can aid our understanding of the relationships between the indicator 
and the influence of climatic/environmental and socioeconomic factors (Noor et al. 2009). 

The Markov Chain Monte Carlo (MCMC) algorithms have been the most common method for making 
Bayesian statistical inferences with generalized linear geostatistical models (GLGM) (Gilks, Richardson 
and Spiegelhalter 1996). The MCMC has been developed for model estimation, but can be computationally 
expensive, especially with big data. There has been a recent increase in the application of integrated nested 
Laplace approximation (INLA) methodology and software (http://www.rinla.org) in Bayesian spatial 
models (Rue, Martino, and Chopin. 2009). The choice of this method over MCMC is based on the speed of 
calculation and the ease with which model comparison can be performed (Rue, Martino, and Chopin. 2009). 

1.2 Objectives 

In this report, we explore the potential of model-based geostatistics (MBG) methodology (described in the 
methods section) to model DHS survey indicators. More specifically, we use the stacking and ensemble 
model approaches to predict the indicators at a high resolution gridded pixel level, produce estimates at the 
ADMIN 2 level, and measure the uncertainty of estimates. The INLA methodology is used to create a model 
for predicting the indicators based on the different geospatial covariates and spatially correlated random 
effects, and to produce prediction maps. The report will develop R code structure and workflow for routine 
interpolation of survey data at the second subnational administrative level (ADMIN 2). 
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2 SELECTION OF DHS INDICATOR 

The six indicators in our analysis were extracted from two national DHS surveys, the Kenya 2014 DHS and 
Ethiopia 2016 DHS. We considered data only from those surveys that had described the total number of 
individuals examined, the proportion of positive cases, and the coordinates of their geographical locations. 
From these surveys, we obtained 1,583 and 620 point clusters for Kenya and Ethiopia, respectively. Table 1 
describes the indicators we modeled. 

Table 1 Description of DHS indicators used in the study 

Indicator  Definition 

Antenatal visits for pregnancy: 4+ visits Percentage of women who had a live birth in the 5 years before the survey who 
had 4+ antenatal care visits 

Stunting in children Percentage of children under age 5 stunted (below -2 SD of height-for-age 
according to the WHO standard) 

Wasting in children Percentage of under 5 children with a weight-for-height z-score (WHZ) more than 
two SD below the median WHO growth standards 

Population living in household with an 
improved water source 

Percentage of the de jure population living in households whose main source of 
drinking water is an improved source 

Women age 15-49 with any anemia** Percentage of women classified as having any anemia (<12.0 g/dl for non-
pregnant women and <11.0 g/dl for pregnant women) 

Diphtheria-tetanus-pertussis (DPT3) received Percentage of children age 12-23 months who had received a third DPT dose 

** Data not collected for the Kenya DHS 2014. 
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3 METHODS 

A modeling framework for generating standardized modeled surfaces using DHS survey data has been 
described in SAR 11 (Gething et al. 2015) and SAR 14 (Burgert 2014). In this analysis, we employed a new 
geospatial modeling approach similar to that used in recent mapping of child growth failure (Osgood-
Zimmerman et al. 2018), education attainment (Graetz et al. 2018), vaccine coverage (Mosser et al. 2019), 
HIV (Dwyer-Lindgren et al. 2019), exclusive breastfeeding (Bhattacharjee et al. 2019), and childhood 
diarrheal diseases (Reiner et al. 2018). We adopted this method because it has been shown to improve the 
prediction accuracy based on the stacked generalization that allows for multiple, non-linear algorithmic 
mean functions to be embedded within a Gaussian process framework (Bhatt et al. 2017). We detail this 
approach in the next sections. 

3.1 Geospatial Covariates 

To model the DHS indicators, we assembled environmental and socioeconomic geospatial covariate data 
layers, which were obtained from publicly available remote sensing sources. These data included access 
(travel time to nearest settlement), aridity, diurnal temperature range, precipitation, potential evapo-
transpiration (PET), daily maximum temperature, elevation, enhanced vegetation index (EVI), daytime land 
surface temperature, diurnal difference in land surface temperature, night land surface temperature (LST), 
and population categories (children under age 5, women age 15 to 49, and total population). Further 
description of each covariate can be obtained from the DHS Geospatial Covariate Report (Mayala et al. 
2018). 

The geospatial covariates were selected for their potential to predict DHS indicators, and they have 
previously been shown to correlate with the development of indicators in different settings (Alegana et al. 
2015, Gething et al. 2015). Table 2 describes the spatial and temporal resolution of each geospatial covariate 
and the sources. 

Table 2 Geospatial covariates used to develop the models in this study 

Covariates 
Spatial 

resolution 
Temporal 
resolution Source 

Travel time to nearest settlement 
>50,000 inhabitants 

5x5 km Static https://map.ox.ac.uk/research-project/accessibility_to_cities/ 

Aridity 10x10 km Annual http://wps-web1.ceda.ac.uk/ui/home 
Diurnal temperature range 10x10 km Annual http://wps-web1.ceda.ac.uk/ui/home 
Precipitation 10x10 km Annual http://wps-web1.ceda.ac.uk/ui/home 
Potential evapotranspiration 

(PET) 
10x10 km Annual http://wps-web1.ceda.ac.uk/ui/home 

Daily maximum temperature 10x10 km Annual http://wps-web1.ceda.ac.uk/ui/home 
Elevation 1x1 km Static http://webmap. ornl.gov 
Enhanced vegetation index (EVI) 5x5 km Annual https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_ 

table/mod13a1 
Daytime land surface 

temperature (LST) 
5x5 km Annual http://wps-web1.ceda.ac.uk/ui/home 

Diurnal difference in LST 5x5 km Annual http://wps-web1.ceda.ac.uk/ui/home 
Nighttime LST 5x5 km Annual http://wps-web1.ceda.ac.uk/ui/home 
Population distribution 1x1 km Annual http://www.worldpop.org.uk/data/get_data/ 
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3.1.1 Geospatial covariates processing 

The geospatial covariate data layers used in this analysis were acquired from a myriad of data sources, and 
therefore have different spatial references, projections, extents, and dimensions. For example, gridded 
population data and elevation had a 1 x 1 km spatial resolution, EVI was at 5 x 5 km, and temperature range 
at 10 x 10 km resolution. We used the ‘raster’ and ‘shapefiles’ packages in the R software (R Core Team 
2018) to (1) re-project to the same coordinate reference system (the standard-based World Geodetic System 
1984), (2) crop and mask to an extent encompassing the boundaries of the study area and (3) resample with 
bilinear interpolation to the same spatial resolution used in the modeling, 5 x 5 km (Figure 1). 

Figure 1 The conceptual framework of processing the geospatial covariates, using Kenya as an example 
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3.2 Geostatistical Model 

3.2.1 Overview of the modeling approach 

Figure 2 depicts the geospatial modeling framework used for modeling DHS indicators and the underlying 
covariates and producing the gridded pixel and subnational level estimates. The approach involved the 
following steps: 

Step 1 - We summarized the individual-level DHS survey data to the finest spatial resolution (latitude and 
longitude) that represented the location of the survey cluster. 

Step 2 - The processed geospatial covariates (from the previous section) and the cluster (point) level data 
were imported into the R environment for statistical computing (R Core Team. 2018). We then applied the 
‘raster’ package to extract the corresponding covariate pixel values at each survey cluster point. 

Step 3 - The point level data (from Step 2) and their associated geospatial covariates were used in the 
stacked (submodels) generalization ensemble model (described in Section 3.2.2). The prediction surfaces 
generated from the stacked ensemble models were then used as covariates in the final geospatial (MBG) 
model. The outputs of the final model are pixel-level mean estimates with associated uncertainty at the 5 x 
5 km resolution. 

Step 4 - We aggregated the prediction output from the final model (Step 3) to the ADMIN 2. 
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Figure 2 Geospatial modeling flowchart 

 
Note: Figure modified from Mosser et al. 2019 and Dwyer-Lindgren et al. 2019. 
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3.2.2 Covariate ensemble modeling using stacked generalization 

Stacking (also called stacked generalization/regression) is an ensemble modeling approach that combines 
multiple model algorithmic methods to increase predictive validity relative to a single modeling approach. 
We employed this approach to capture the potential complex interactions and non-linear effects among the 
geospatial covariates (Figure 3). The ensemble approach has been shown to improve the predictive accuracy 
of the geostatistical models, as compared to prediction from any single method (Bhatt et al. 2017). 
Numerous recent studies have implemented the stacking approach to derive continuous estimated surfaces 
of indicators of interest from DHS household surveys. These include mapping of HIV prevalence (Dwyer-
Lindgren et al. 2019), vaccine coverage (Mosser et al. 2019), exclusive breastfeeding (Bhattacharjee et al. 
2019), child growth failure (Osgood-Zimmerman et al. 2018), education attainment (Graetz et al. 2018), 
and childhood diarrheal diseases (Reiner et al. 2018). 

In our analysis, we fitted three submodels to each set of the selected DHS indicator survey data using the 
geospatial covariates (described in Table 2) as exploratory predictors. These include (1) GAM: generalized 
additive model (Wood 2017), (2) LASSO: least absolute shrinkage and selection operator regression (Zou 
and Hastie 2005) and (3) GBM: gradient - boosted trees (Friedman 2001). The submodels were 
implemented in R statistical for the computing environment using packages ‘caret’, ‘mgcv’, ‘xgboost’, and 
‘glmnet’. We selected these model algorithms because they have demonstrated high predictive accuracy in 
previous studies (Barbet-Massin et al. 2012; Elith and Graham 2009; Elith et al. 2006; Franklin 2009; 
Giovanelli et al. 2010; Lobo, Jiménez-Valverde and Hortal 2010; Mateo et al 2010; Pearson et al. 2007; 
Peterson et al. 2011; Phillips, Anderson, and Schapire 2006; Wisz and Guisan 2009). 

To make better predictions and avoid overfitting, each submodel was fit using five-fold cross–validation, 
which generated the out-of-sample predictions that were included as exploratory geospatial covariates when 
fitting the geostatistical model. In addition, each submodel was fit with a full dataset, which produced the 
in-sample predictions that were then used as covariates when generating predictions from the full 
geostatistical model. A logit transformation of the predictions was used to place the out-of-sample and in-
sample predictions on the same scale as the linear predictor in the geostatistical model. This process has 
been described in detail (Bhatt et al. 2017; Dwyer-Lindgren et al. 2019). We illustrate this process in Figure 
3, which shows the predicted in-sample layers generated from the submodels using stunting in the Kenya 
DHS 2014 as an example. 
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Figure 3 Example of in-sample predictions from the three submodels (generalized additive model, lasso 
regression, and gradient - boosted trees) fitted using the geospatial covariates and DHS data. 
These predicted surfaces are then used as covariates in the full geostatistical model 
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3.2.3 Model specification and development 

As described in the previous section, the ensemble modeling approach allows for non-linear relationships 
and interactions between the geospatial covariates to better predict the DHS indicators. Since the approach 
does not explicitly account for spatial patterns in the data, we used the Bayesian geostatistical modeling 
framework in our analysis to account for the spatial dependence. 

For each indicator of interest, we modeled 𝑌௜, the number of ‘positive’ individuals among those sampled at 
cluster location 𝑠௜, 𝑖 = 1, . . . 𝑛, using a binomial spatial regression with a logit link function (Banerjee, 
Carlin, and Gelfand 2014; Diggle and Giorgi 2019). Letting 𝑁௜ be the total number of individuals sampled 
at cluster 𝑠௜, the model can be written as: 𝑌௜ ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁௜, 𝑝௜) 𝑙𝑜𝑔𝑖𝑡( 𝑝௜) = 𝛽଴ +  𝛽Χ௜ + 𝜔௜ +  𝜀௜ 𝜔௜ ~ 𝐺𝑃(0, Σ) 

Where: 

- 𝛽଴ denotes the intercept, 

- 𝑝௜ is the probability, representing the underlying prevalence at cluster 𝑠௜, 
- 𝑋௜ = ൫𝑋௜ଵ,𝑋௜ଶ, . . . 𝑋௜௠൯ is the vector of logit-transformed covariates for location 𝑠௜ obtained from 

the submodels (GAM, LASSO, and GBM), generated from the stacked ensemble covariate modeling 
(as described in Section 3.2.2), 

- 𝛽 = (𝛽ଵ, 𝛽ଶ, . . . 𝛽௠) vector of regression coefficients on the submodels represent their respective 
predictive weighting and are constrained to sum to one (Bhatt et al. 2017), 

- 𝜔௜ is a correlated spatial error term, accounting for spatial autocorrelation between data points, and 

- 𝜀௜ ~ Ν൫0, 𝜎௡௨௚ଶ  ൯ is an independent error term known as nugget effect. 

The spatial error term 𝜔௜ is modeled as Gaussian process with a zero-mean and spatially structured 
covariance matrix ∑. 

The spatial covariance ∑ was modeled using a stationary and isotropic Matérn function (Banerjee et al. 
2014), given by: 

∑൫𝑠௜, 𝑠௝൯  =  𝜎ଶΓ(𝜆)2ఒିଵ ቆ𝜅𝑑൫𝑠௜, 𝑠௝൯ఒ𝐾ఒ ቀ𝜅𝑑൫𝑠௜, 𝑠௝൯ቁቇ 

Where 𝑑൫𝑠௜, 𝑠௝൯ is the distance between the two locations and 𝜎ଶis the spatial process variance. The term 𝐾ఒ denotes the modified Bessel function of second kind and order 𝜆, which measures the degree of 
smoothness. Conversely, 𝜅 is a scaling parameter related to the range 𝑟, that is the distance at which the 
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spatial correlation becomes almost null (i.e., smaller than 10%), and the definition for the range is given in 
equation below. See example by Lindgren et.al (2011) for detail description. 

𝑟 = √8𝜆𝜅  

The Bayesian geostatistical model analysis was implemented through a stochastic partial differential 
equations (SPDE) approach in the recently developed INLA algorithm as applied in the R-INLA package 
(Rue, Martino, and Chopin 2009). This algorithm provides an effective estimation and spatial prediction 
strategy for spatial data by specifying a spatial data process as well as a spatial covariance function 
depending on locations and time points at which infection and covariate data are collected (Rue, Martino, 
and Chopin 2009). The INLA approach offers an advantage of providing accurate and fast results as 
compared to the MCMC algorithms, which are known to have problems of convergence and dense covariate 
matrices that increase the computational time. Thus, for large datasets, spatial and spatiotemporal estimation 
could lead to several days of computing time (Blangiardo and Cameletti 2015; Cameletti et al. 2013; Rue, 
Martino, and Chopin 2009). 

The SPDE allow us to define a grid on spatial data by creating a constrained refined Delaunay triangulation 
(usually called mesh) over the study region. With this approach, observations are treated as initial vertices 
for the triangulation. Further vertices are then added or removed to satisfy triangulation quality constraints 
defined by three parameters: (1) cutoff, (2) offset and (3) maximum edge (Blangiardo and Cameletti 2015; 
Lindgren, Rue, and Lindstrom 2011). 

A cutoff value was specified to avoid building too many small triangles around the clustered data locations. 
An offset value defined how far the mesh should be extended in the inner part (within areas where 
predictions are required) and the outer part (outside the area where predictions are required). The maximum 
edge value specified the maximum allowed edge length of the triangle in the inner domain and the outer 
extension. The inner maximum edge value was small enough to allow the triangulation to support functions 
with small enough features, and typically smaller than the spatial correlation range of the model (Lindgren, 
Rue, and Lindstrom 2011). Figure 4 provides an example of the finite mesh used for modeling. 

As opposed to the regular grid, this approach is more dense in regions where there are more observations 
and consequently generates more information. Another advantage is that this approach saves computing 
time because prediction locations are typically much lower in number than those in a regular grid. 
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Figure 4 INLA mesh triangulation for Ethiopia (left) and Kenya (right). The larger triangles show the buffer 
region surrounding the modeling region (maximum triangle edge length of 5.0 degrees, while the 
finer inner mesh overlays the modeling region (maximum triangle edge length of 0.1 degrees). 
The simplified polygon used to define the modeling county boundary is shown in blue. 

 

3.2.4 Pixel level model estimates 

The prediction surfaces generated from the ensemble submodels (described in Section 3.2.2) were used as 
input covariates in the geostatistical models implemented in INLA. The final estimates (and uncertainty) 
for each indicator were generated by taking 𝑘 = 1, . . .1000 samples from the posterior predictive 
distribution. Pixel level estimates that covered the modeling country (Kenya and Ethiopia) were produced 
at a high spatial resolution of 5 x 5 km. 

3.2.5 Model estimates at admin level 2 

In addition to the 5 x 5 km pixel level estimates, we overlaid the prediction prevalence surfaces (from 
Section 3.2.4) with the relevant population layer (children under age 5, women age 15 to 49, and total 
population) for each indicator we modeled. We then constructed estimates of each indicator at the second 
subnational administrative level by calculating population-weighted averages of prevalence for all grid cells 
within a given administrative boundary. The procedure was performed for each of the 1,000 posterior 
predictive samples with final point estimates derived from the mean of these draws and uncertainty intervals 
from the 2.5 and 97.5 percentiles. 

3.2.6 Model validation 

For each of the indicator model outputs, we implemented a validation procedure and calculated a set of 
performance statistics. This involved using an out-of-sample cross-validation with a five-fold hold-out 
procedure and a comparison of the predicted values at the locations of the hold-out data with their observed 
values. This procedure was repeated five times without replacement so that every data point was omitted 
one time across the five validation runs. Standard validation statistics were then computed as measures of 
the predictive accuracy of the modeled estimates. This included mean absolute error (MAE), mean error 
(ME) or bias; root - mean - squared - error (RMSE, which summarizes the total variance); and 50%, 80%, 
and 95% coverage of our predictive intervals aggregated to the spatial holdout level. Each predictive metric 
was calculated by first simulating predictive draws using a binomial distribution. The predictive metric of 
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interest was then calculated as a sample-size-weighted mean over the second administrative levels (Mosser 
et al. 2019). To complement the out-of-sample predictive validity metrics, we also calculated in-sample 
predictive validity metrics that used the same process but matched each data point to predictions from a 
model fitted with all data. 
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4 RESULTS 

4.1 Stacking Results 

Here we present results obtained from the individual submodels according to the environmental and 
socioeconomic predictor variables in our model. The submodels revealed that the prediction of the DHS 
indicators varies spatially in the different areas in the country. Figure 5 and Figure 6 represent in-sample 
prediction areas with high and low prevalence of stunting for the Kenya DHS 2014 and Ethiopia DHS 2016 
surveys that we generated from the three submodels. 

Figure 5 Predicted surfaces for stunting in Kenya generated from the three submodels (GAM, GBM, and 
LASSO) 
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Figure 6 Predicted surfaces for stunting in Ethiopia generated from the three submodels (GAM, GBM, and 
LASSO) 
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4.2 Prediction Maps 

Prediction prevalence maps for each indicator were created using the full geospatial Bayesian model. Figure 
7 and Figure 8 show the pixel level prediction surface maps for Kenya and Ethiopia, respectively. Areas 
with high and low estimated prevalence of each indicator can be seen clearly across all maps. 

Figure 7 Pixel level prediction of prevalence of the indicators modeled by using the Kenya DHS 2014: (a) 
Stunting, (b) Wasting, (c) Vaccine DPT3, (d) ANC visits, and (e) Water sources  

(a)  (b)  

(c)  (d)  

 Continued…
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Figure 7—Continued 

(e)   
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Figure 8 Pixel level prediction of prevalence of the indicators modeled by using the Ethiopia DHS 2016: (a) 
Stunting, (b) Wasting, (c) Vaccine DPT3, (d) ANC visits, (e) Water sources, and (f) Women’s anemia 
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4.3 Admin Level 2 Estimates 

Figure 9 and Figure 10 show the second subnational administrative level estimates that highlight areas with 
high and low prevalence of each indicator we modeled. Additional results that show the mean prediction 
and the uncertainty intervals from the 2.5 and 97.5 percentiles are described in the Appendix Table A1 
(Kenya) and Appendix Table A2 (Ethiopia). 

Figure 9 Second subnational administrative level estimates for Kenya DHS 2014: (a) Stunting, (b) 
Wasting, (c) Vaccine DPT3, (d) ANC visits, and (e) Water sources  

(a)  (b)  

(c)  (d)  

Continued…
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Figure 9—Continued 

(e)   
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Figure 10 Second subnational administrative level estimates for Ethiopia DHS 2016: (a) Stunting, (b) 
Wasting, (c) Vaccine DPT3, (d) ANC visits, (e) Water sources, and (f) Women’s anemia 

(a)  (b)  

(c)  (d)  

 Continued…
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Figure 10—Continued 

(e)  (f)  
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4.4 Model Validation Metrics 

Model validation was performed by calculating bias (mean error); mean absolute error (MAE); variance 
(RMSE); 50%, 80%, and 95% data coverage within prediction intervals; and the correlation between 
observed data and predictions. 

Results from the validation indicated the best performance for each indicator, where correlation increased 
with decreased MAE and RMSE values. The coverage values for some indicators (vaccine) were too high, 
which was most likely a result of high uncertainties that arise from the small sample at the cluster locations 
(Table 3 and Table 4). 

Table 3 Predictive metrics for each indicator aggregated at admin 2 (Kenya) 

Indicator  ME MAE RMSE 50% Cov 80% Cov 95% Cov Correlation 
Stunting In-sample 0.0019 0.0150 0.0183 0.7012 0.9272 0.9938 0.9742 

 Out-of-sample 0.0025 0.0207 0.0254 0.6470 0.8819 0.9816 0.9501 
Wasting In-sample -0.0003 0.0065 0.0083 0.8651 0.9680 0.9950 0.9849 

 Out-of-sample 0.0002 0.0083 0.0104 0.8389 0.9460 0.9826 0.9769 
DPT3 In-sample 0.0026 0.0217 0.0260 0.8930 0.9792 0.9975 0.9624 

 Out-of-sample -0.0016 0.0276 0.0341 0.8538 0.9461 0.9911 0.9288 
4+ ANC Visits In-sample -0.0001 0.0149 0.0199 0.7129 0.9229 0.9863 0.9844 

 Out-of-sample -0.0004 0.0209 0.0288 0.6575 0.8838 0.9701 0.9643 
Water Sources In-sample -0.0099 0.0321 0.0399 0.7566 0.9541 0.9947 0.9766 

 Out-of-sample -0.0148 0.0453 0.0549 0.5953 0.8731 0.9644 0.9582 

 

Table 4 Predictive metrics for each indicator aggregated at admin 2 (Ethiopia) 

Indicator  ME MAE RMSE 50% Cov 80% Cov 95% Cov Correlation 

Stunting In-sample 0.0010 0.0257 0.0346 0.7608 0.9513 0.9939 0.9505 

 Out-of-sample 0.0024 0.0403 0.0513 0.6262 0.8787 0.9777 0.8808 
Wasting In-sample 0.0018 0.0247 0.0327 0.7268 0.9221 0.9863 0.8010 

 Out-of-sample 0.0009 0.0242 0.0325 0.7242 0.9221 0.9854 0.7981 
DPT3 In-sample -0.0015 0.0628 0.0898 0.9229 0.9963 1.0000 0.9545 

 Out-of-sample -0.0076 0.0706 0.1023 0.8935 0.9786 1.0000 0.9364 
4+ ANC Visits In-sample -0.0054 0.0299 0.0441 0.8339 0.9705 0.9978 0.9823 

 Out-of-sample -0.0078 0.0493 0.0764 0.6513 0.9002 0.9884 0.9358 
Water Sources In-sample -0.0217 0.0510 0.0734 0.7663 0.9607 0.9955 0.9505 

 Out-of-sample -0.0318 0.0767 0.1156 0.6518 0.8773 0.9724 0.8535 
Women’s Anemia In-sample 0.0002 0.0271 0.0381 0.6792 0.9155 0.9944 0.9569 

 Out-of-sample 0.0016 0.0385 0.0564 0.4965 0.7694 0.9095 0.9087 
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4.4.1 Comparison of model estimates versus DHS estimates 

Figures 11 to 14 show the comparison estimates for each indicator produced by the models in our analysis 
and the equivalent estimates from the observed DHS survey data. The results indicate a high correlation 
between MBG and DHS estimates for most indicators. 

Figure 11 Comparison of in-sample predictions for each indicator, aggregated to the second subnational 
administrative level with 95% uncertainty intervals, plotted against data observations from the 
same area aggregated to the second subnational administrative level for Kenya 
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Figure 12 Comparison of in-sample predictions for each indicator, aggregated to the second subnational 
administrative level with 95% uncertainty intervals, plotted against data observations from the 
same area aggregated to the second subnational administrative level for Ethiopia 
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Figure 13 Comparison of out-of-sample predictions for each indicator, aggregated to the second 
subnational administrative level with 95% uncertainty intervals, plotted against data 
observations for Kenya 
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Figure 14 Comparison of out-of-sample predictions for each indicator, aggregated to the second 
subnational administrative level with 95% uncertainty intervals, plotted against data 
observations for Ethiopia 
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5 DISCUSSION AND CONCLUSION 

In recent years, there has been a need for district (ADMIN 2) estimates currently not available in a DHS 
survey. In an increasingly resource-constrained environment, high resolution maps of key health indicators 
and development derived from cluster point data through spatial interpolation methods offer an attractive 
solution. 

In this analysis, we developed a methodological framework for estimating DHS indicators at the ADMIN 
2 level. We took advantage of the advancement in geospatial technologies, availability of free and open 
source spatial data, and geospatial software tools relevant for spatial modeling. This framework used an 
ensemble modeling approach that combines multiple model algorithmic methods to increase predictive 
validity relative to a single modeling approach. We employed this approach to capture potential complex 
interactions and non-linear effects among the geospatial covariates. We fitted three submodels (GAM, 
LASSO, and GBM) to each of the selected DHS survey indicator data using the geospatial covariates as 
exploratory predictors. The submodels were selected because they were available in standalone packages 
that required minimal data preparation after the predictor variables had been produced; they are particularly 
useful in cases where presence-only data are available (Peterson, Papes, and Eaton 2007; Phillips and Dudik 
2008; Elith et al. 2006) and have been successfully used in previous analyses that have implemented the 
stacking approach to derive continuous estimated surfaces of indicators of interest from the DHS household 
surveys. These include mapping of malaria (Bhatt et al. 2017), HIV prevalence (Dwyer-Lindgren et al. 
2019), vaccine coverage (Mosser et al. 2019), exclusive breastfeeding (Bhattacharjee et al. 2019), child 
growth failure (Osgood-Zimmerman et al. 2018), education attainment (Graetz et al. 2018), and childhood 
diarrheal diseases (Reiner et al. 2018). 

We found variability in the individual model prediction outputs. For example, the LASSO model output 
indicated a low prediction of stunting in the northeast areas of Kenya (Figure 5) as compared to the other 
algorithms. This could be explained by the prediction uncertainties in the individual submodels (Elith et al. 
2006; Peterson, Papes, and Eaton 2007). Using different models and combining them in an ensemble model 
could improve these uncertainties (Arauj and New 2007; Marmion et al. 2009; Jones-Farrand et al. 2011). 
Our findings demonstrated that the predictions from the stacking ensemble model approach were more 
accurate than those from the individual model algorithms. The results suggest that use of an ensemble model 
approach is more adequate than predictions from any single modeling methods. These findings are 
consistent with other studies (Marmion et al. 2009; Bhatt et al. 2017), which showed the ensemble model 
approach to be the best. By developing the methodological framework within the R statistical computing 
environment, we have created a tool that can be used to model other health indicators. 

The results from the ADMIN 2 level, generated from the full geostatistical model, show that the estimated 
prevalence of each indicator varied across the different areas in the country. We found that the proportion 
of ADMIN 2 with uncertain or very uncertain estimates is high. The reason could be that DHS survey data 
are designed to be representative at the national and first administrative levels, but not at the ADMIN 2 
level. The accuracy of the estimates could be improved by computing them at a lower resolution (if data 
are available) or by increasing the sample size of the DHS survey. Both approaches increase the number of 
observations per administrative unit. However, increasing the sampling size of a survey is costly, especially 
in resource–constrained countries (Utazi et al. 2018; Gething and Burgert-Brucker 2017). 
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Although we have estimated the prevalence for each indicator at the pixel-level and the ADMIN 2 level, 
our study has some limitations. Our analysis used a suite of standard geospatial covariates that included 
those that are not directly related to the indicators we modeled. To improve predictions, further studies 
should restrict the model input data to those covariates associated with the indicators of interest. Due to 
computational limitations, we did not quantify uncertainty in the covariates and submodel estimates. Thus 
further analysis should develop methods that are capable of propagating uncertainty in both the covariates 
and submodel estimates (Dwyer-Lindgren et al. 2019; Wakefield et al. 2018). 

We generated maps showing estimates of high risk areas for each indicator we modeled. Our approach in 
this analysis can help inform the allocation of resources and program implementation in areas that need 
more attention. Interventions and programs that can be implemented and directed at much smaller spatial 
scales using the MBG estimates such as the one described in our analysis could enable better programmatic 
decisions. 
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