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Preface 

The Demographic and Health Surveys (DHS) Program is one of the principal sources of international data 
on fertility, family planning, maternal and child health, nutrition, mortality, environmental health, 
HIV/AIDS, malaria, and provision of health services. 

The DHS Spatial Analysis Reports supplement the other series of DHS reports to meet the increasing 
interest in a spatial perspective on demographic and health data. The principal objectives of all DHS 
report series are to provide information for policy formulation at the international level and to examine 
individual country results in an international context. 

The topics in this series are selected by The DHS Program in consultation with the U.S. Agency for 
International Development. A range of methodologies are used, including geostatistical and multivariate 
statistical techniques. 

It is hoped that the DHS Spatial Analysis Reports series will be useful to researchers, policymakers, and 
survey specialists, particularly those engaged in work in low- and middle-income countries, and will be 
used to enhance the quality and analysis of survey data. 

 

Sunita Kishor 
Director, The DHS Program 
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Abstract 

As interest in describing subnational variation in demographic and health indicators grows, The DHS 
Program has commenced a plan of work to enable the routine creation and dissemination of spatially 
modeled indicator surfaces for a set of key indicators. This will be done based on model-based 
geostatistical (MBG) techniques. To further understand the performance of these models and the factors 
influencing that performance, this study has investigated (1) what common factors drive MBG modeled 
surface accuracy and (2) how accurately MBG models can predict aggregated estimates at a finer spatial 
scale than the first subnational administrative unit level (SNU1). 

To explore factors influencing model performance, 15 DHS indicators were modeled across 16 countries. 
Certain indicators performed consistently well across all countries, and others consistently less well. The 
amount of cluster-level variation in each indicator and the extent to which that variation was spatially 
autocorrelated were the two most important factors in determining the accuracy of modeled surfaces. It 
was possible to predict how accurately a given indicator could be mapped based on simple attributes of 
the raw input data. 

To explore the ability of MBG models to provide accurate indicator estimates below the SNU1 level, 
experiments were conducted using the 2014 Kenya DHS, which is unique in having been sampled with 
approximately four times greater density of clusters than a standard DHS. Analyses based on artificially 
thinned versions of this data demonstrated that MBG surfaces and aggregated estimates performed 
progressively better as survey sample size was increased. We found that the use of a geostatistical model 
to estimate aggregated indicator estimates tends to yield more precise estimates than the default approach 
of directly calculating weighted means of survey data. On average across the indicators and performance 
metrics, the use of a geostatistical model based on a standard DHS survey to estimate indicators at 
“standard” SNU2 level (i.e., at a level of geographical aggregation equivalent to SNU2 in most countries) 
yields results of accuracy equivalent to a survey three times larger in the absence of a geostatistical 
model. 

The integration of geospatial methods in the survey design and subsequent data analysis stages should be 
considered for future DHS surveys, especially if a desired outcome is to provide precise estimates below 
the SNU1 level. This integration will provide more precise estimates below the SNU1 level and do so 
with fewer requirements for large sample sizes. 
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Executive Summary 

Background and Objectives 

Improved understanding of geographic variation in demographic and health indicators within countries is 
increasingly recognized as central to meeting development goals but, when assessed only at national or 
highly aggregated subnational levels, important geographical inequities are often concealed. In an 
international policy environment with limited funding for health and development, the ability to target 
limited resources to populations of highest need becomes crucial. To meet the growing need for indicator 
estimates at much finer levels of geographic disaggregation, DHS has commenced a program of work to 
enable the routine creation and dissemination of spatially modeled indicator surfaces for a set of key 
indicators, based on model-based geostatistical (MBG) techniques. This increasing interest in modeled 
surfaces has motivated further questions around the factors that determine their accuracy in different 
settings, and the extent to which the techniques can form the basis for aggregated estimates at small 
subnational decision making units. Accordingly, the current report has two main objectives: 

Objective 1: to investigate whether common factors can be identified that drive the accuracy with which a 

modeled indicator surface can be generated using MBG approaches. 

Objective 2: to explore how accurate the surfaces are when used to generate aggregate indicator 

estimates below (i.e., at finer spatial scale) the first-level subnational units (SNU1) for which standard 

DHS surveys are ostensibly designed. 

Understanding Determinants of Accuracy 

Investigating the potential drivers of geospatial model accuracy was conducted in four parts. First, we 
used model-based geostatistics to generate modeled spatial surfaces for a large set of indictors and 
country surveys. Second, out-of-sample validation was performed for each of these country-indicator 
surfaces and accuracy metrics were calculated. Third, a set of statistics was computed for each country-
indicator that described a broad range of attributes associated with each survey and indicator, and we 
examined the correspondence between those attributes and the accuracy of the subsequent modeled 
spatial surface. Fourth, an exercise was conducted to assess the extent to which, given only knowledge of 
those descriptive data attributes, the potential accuracy of a modeled spatial surface could be predicted. 

Comparison of model performance across 16 countries and 15 indicators showed considerable variation. 
In general, the performance for a given indicator was somewhat consistent across countries: indicators 
such as ITN access, improved sanitation and female literacy, for example, were predicted with 
consistently good accuracy across all countries while others, such as child vaccination, were consistently 
less accurate. Indicator type had more influence on performance than did country/survey setting, although 
some surveys did tend to perform better than others across all indicators.  

Analysis of the factors driving model performance revealed that important factors included the amount of 
variation in the indicator observations between survey clusters, and the extent to which that variation was 
spatially autocorrelated. A meta-model that aimed to predict the likely performance of a geospatial model 
based only on attributes of the input data had good predictive power, able to predict future performance 
statistics with an R2 of around 0.75. This means that, when deciding which indicators to potentially 
subject to a geostatistical mapping exercise, it should be possible to predict reasonably well whether the 
resulting maps will or will not meet a particular level of accuracy. 
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Understanding Utility of Spatial Modeling for Generating Indicators at 

Second-Level Subnational Administrative Levels 

Following a national reorganization of administrative unit boundaries, the 2014 Kenya DHS was designed 
with a uniquely dense sampling frame, approximately four times larger than a traditional DHS survey. 
This provides a unique opportunity to test the ability of geostatistical modeled surfaces to generate 
sufficiently accurate indicator estimates at what, in nearly every country other than Kenya, would be 
considered the SNU2 level. The approach proceeded in four main steps. First, the geospatial model was 
used to generate County-level indicator estimates based on the full 2014 Kenya DHS data set, and these 
were compared with the directly calculated (i.e. weighted mean) estimates presented in the 2014 Kenya 
DHS report. For later reference, pixel-level modeled surfaces were also produced for each indicator using 
the full data set. Second, the full 2014 Kenya DHS data set was then artificially thinned by progressive 
intervals, with the most thinned version replicating the survey design of a standard DHS—based on the 
2008 Kenya DHS. Third, the thinned data sets were then used to generate both pixel-level and County-
level geospatial estimates, and the effects of thinning on performance were measured. Fourth, the relative 
accuracy of County-level estimates derived from thinned data sets was compared between the geospatial 
model and directly calculated (weighted mean) estimates. 

We found that the use of a geostatistical model to estimate aggregated indicator estimates tends to yield 
more precise estimates than the default approach of directly calculating weighted means of survey data. 
On average across the indicators and performance metrics, the use of a geostatistical model based on a 
standard DHS survey to estimate indicators at “standard” SNU2 level (i.e. at a level of geographical 
aggregation equivalent to SNU2 in most countries) yields results of equivalent accuracy to a survey three 
times larger in the absence of a geostatistical model. 

Implications and Recommendations 

An immediate and general recommendation arising from this work is that the integration of geospatial 
methods in the survey design and subsequent data analysis stages should be considered for future DHS 
surveys, especially if a desired outcome is to provide precise estimates below the SNU1 level. This 
integration will provide more precise estimates below the SNU1 level and do so with fewer requirements 
for large sample sizes. 

To fully operationalize this recommendation, the analyses presented here would require a number of 
extensions. First, repeating the work implemented here for the 2014 Kenya DHS to at least one other 
survey with similarly dense sampling would provide verification of the generalizability of the findings. 
Second, a generalized framework could be envisioned that would allow prospective survey design to be 
carried out to achieve pre-specified levels of precision using the geospatial model, taking into account the 
exact nature of SNU2 units in a given country. Such a framework would require the current analysis to be 
repeated for a synthetic set of administrative units at progressively smaller levels of aggregation, to 
provide reference results against which actual units in other countries could be compared. 



1 

1 Background and Objectives 

Improved understanding of geographic variation and inequity in health status, wealth, and access to 
resources within countries is increasingly recognized as central to meeting development goals. When 
assessed only at national or highly aggregated subnational levels, development and health statistics can 
often conceal important geographical inequities. In an international policy environment with limited 
funding for health and development, the ability to target limited resources to populations of highest need 
becomes crucial.  

The Demographic and Health Survey (DHS) Program has been a leader in collecting and providing 
cluster-randomized survey data on core development indicators, traditionally described in survey reports 
with indicator statistics disaggregated at first-order subnational regions (for example at province or state 
level) and urban-rural strata. In the context of DHS surveys, a cluster is usually defined based on a 
stratified two-stage cluster design with a first stage selecting Enumeration Areas (EAs), generally drawn 
from national census files, and a second stage sampling households within each EA from a household list. 
The availability in most recent surveys of GPS coordinates for DHS clusters—as well as for Malaria 
Indicator Surveys (MIS) and AIDS Indicator Surveys (AIS) clusters—provides highly resolved locational 
information that can be linked with survey outputs for quantifying demographic and health status 
heterogeneities and inequities. 

To meet the growing need for indicator estimates at much finer levels of geographic disaggregation, DHS 
has commenced a program of work to enable the routine creation and dissemination of spatially modeled 
indicator surfaces for a set of key indicators to accompany current and future population-based DHS 
surveys and for a selection of earlier surveys. The maps are publicly available for download on the DHS 
Spatial Data Repository (spatialdata.dhsprogram.com). This work has sought to deepen understanding of 
the challenges and best practice for the generation of modeled spatial surfaces based on DHS survey data, 
and to provide practical guidance to potential users. 

This process began in June 2013 with a meeting convened by DHS to bring together key stakeholders to 
discuss the use of geographic data from DHS population-based surveys for spatial interpolation. DHS 
Spatial Analysis Report 9 (SAR 9) (Burgert 2014) summarizes key discussions and recommendations 
from that meeting including indicator selection, methods, and limitations. Following the June 2013 
meeting, DHS began exploring the potential use of Bayesian model-based geostatistics (MBG) for the 
production of interpolated modeled surfaces from the DHS population-based survey GPS-located cluster 
data, testing MBG methods on four indicators in three surveys. DHS Spatial Analysis Report 11 (SAR 11) 
(Gething et al. 2015) summarizes the detailed results of this proof of concept activity, including the 
assessment of method validity, covariates, and uncertainty. The impact on MBG spatially modeled 
surfaces of the geo-masking of DHS cluster coordinates was also investigated. Following that proof-of-
concept, DHS moved to routine production and dissemination of spatially modeled surfaces, and a 
detailed accompanying guidance document for end users is published as DHS Spatial Analysis Report 14 
(SAR 14) (Burgert et al. 2016). 

With this growing suite of completed modeled surfaces, each with accompanying validation statistics 
assessing model performance, it is notable that the precision with which surfaces can be generated (when 
assessed against cluster-level indicator data in out-of-sample tests) varies considerably both between 
indicators and between country surveys. The current analysis was conceived to further understand the 
drivers and implications of this varying accuracy, with two distinct objectives. 



2 

1.1 Objective 1: Understanding factors determining accuracy of spatially 

interpolated surfaces 

Objective 1 is to investigate whether common factors can be identified that drive the accuracy with which 
a modeled indicator surface can be generated using MBG approaches. This leverages the large suite of 
indicators and country surveys that have now been subject to a standardized MBG approach to generate 
modeled surfaces, with consistent out-of-sample validation procedures to measure performance and 
accuracy. Understanding the drivers of accuracy is useful for a number of reasons. First, it can define 
useful rules-of-thumb as to indicators or country settings where DHS survey data are likely to be more or 
less amenable to generation modeled surfaces with high accuracy. Second, it potentially informs future 
survey design to optimize the utility of the resulting data for modeled surface creation. 

1.2 Objective 2: Understanding utility of spatial modeling for generating 

indicators at second-level subnational administrative levels 

Objective 2 is to explore how accurate the surfaces are when used to generate aggregate indicator 
estimates below (i.e. at finer spatial scale) the first-level subnational units (SNU1) for which standard 
DHS surveys are ostensibly designed. In a standard DHS design it is not logically possible to evaluate the 
accuracy of aggregate estimates, whether at SNU1 or second-level subnational units (SNU2), because 
there is no other set of gold-standard values against which to compare. In Kenya, recent changes to the 
national system of subnational administrative units have meant that the 2014 Kenya DHS survey was 
uniquely densely sampled—with approximately a four times greater density of survey clusters than a 
standard DHS. This presented a unique opportunity to provide a gold-standard set of subnational indicator 
values against which geospatial estimates can be tested. 

1.3 Report structure 

The remainder of this report describes the analyses conducted to address these two objectives, presents 
the results, and discusses the implications. Section 2 describes in more detail the DHS surveys and 
indicators included in this analysis. Section 3 then presents the analysis, results, and discussion for 
Objective 1, and Section 4 presents these for Objective 2.  
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2 DHS Surveys and Indicators 

Fifteen indicators were analyzed in this project, they came from 16 national DHS surveys for which 
modeled surfaces were created by the DHS in 2016. The resulting potential set of 240 survey-indicator 
pairs (i.e., 15×16) was reduced to 233, because certain indicators—for example, the prevalence of anemia 
in children—were not obtained in all surveys. Table 1 lists the DHS surveys included in this study 
(referred to in this report as country-surveys), and Table 2 lists the indicators addressed, along with their 
formal definitions. 

 
Table 1. DHS surveys included in this study, with abbreviated Dataset ID codes used throughout 
this document 

Country Year Dataset ID Full DHS survey name 
Bangladesh 2014 BD2014DHS Bangladesh 2014 Demographic and Health Survey 

Cambodia 2014 KH2014DHS Cambodia 2014 Demographic and Health Survey 

Democratic Republic 
of the Congo 

2013-14 CD2013DHS Democratic Republic of the Congo 2013-14 Demographic 

and Health Survey  

Dominican Republic 2013 DR2013DHS Dominican Republic 2013 Demographic and Health Survey  

Egypt 2014 EG2014DHS Egypt 2014 Demographic and Health Survey 

Ghana 2014 GH2014DHS Ghana 2014 Demographic and Health Survey 

Liberia 2013 LB2013DHS Liberia 2013 Demographic and Health Survey  

Mali 2012-13 ML2012DHS Mali 2012-13 Demographic and Health Survey  

Nigeria 2013 NG2013DHS Nigeria 2013 Demographic and Health Survey  

Namibia 2013 NM2013DHS Namibia 2013 Demographic and Health Survey  

Rwanda 2015 RW2015DHS Rwanda 2015 Demographic and Health Survey 

Sierra Leone 2013 SL2013DHS Sierra Leone 2013 Demographic and Health Survey  

Togo 2013-14 TG2013DHS Togo 2013-14 Demographic and Health Survey 

Zambia 2013-14 ZM2013DHS Zambia 2013-14 Demographic and Health Survey 
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Table 2. DHS indicators addressed in the study, their definitions, and abbreviated ID codes used 
throughout this document 

Indicator Definition Indicator ID 
Married women currently using 
any modern method of 
contraception 

Percentage of currently married or in union 

women currently using any modern method of 

contraception 

FP_CUSM_W_MOD 

Demand for family planning 
satisfied by modern methods 

The number of currently married women using 

modern methods of family planning divided by the 

number of currently married women with demand 

for family planning (either with unmet need or 

currently using any family planning) 

FP_NADM_W_PDM 

Unmet need for family planning Percentage of currently married or in union 

women with an unmet need for family planning 

FP_NADM_W_UNT 

Antenatal visits for pregnancy: 
4+ visits 

Percentage of women who had a live birth in the 5 

years preceding the survey who had 4+ antenatal 

care visits 

RH_ANCN_W_N4P 

Place of delivery: Health facility Percentage of live births in the 5 years preceding 

the survey delivered at a health facility 

RH_DELP_C_DHF 

Women who are literate Percentage of women age 15-49 who are literate  ED_LITR_W_LIT 

DPT3 vaccination received Percentage of children age 12-23 months who 

had received a third dose of DPT 

CH_VACC_C_DP3 

Measles vaccination received Percentage of children age 12-23 months who 

had received measles vaccination 

CH_VACC_C_MSL 

Men who are literate Percentage of men age 15-49 who are literate  ED_LITR_M_LIT 

Tobacco use among men Percentage of men age 15-49 who use tobacco 100 -AH_TOBC_M_NON 

Population living in households 
using an improved water source 

Percentage of the de jure population living in 

households whose main source of drinking water 

is an improved source 

WS_SRCE_P_IMP 

Population living in households 
using no toilet facility 

Percentage of the de jure population living in 

households whose main type of toilet facility is no 

facility (practicing open defecation) 

WS_TLET_P_NFC 

Persons with access to an ITN Percentage of the de facto household population 

who could sleep under an ITN if each ITN in the 

household were used by up to two people 

ML_ITNA_P_ACC 

Women age 15-49 with any 
anemia 

Percentage of women classified as having any 

anemia (<12.0 g/dl for non-pregnant women and 

<11.0 g/dl for pregnant women) 

AN_ANEM_W_ANY 

Children stunted Percentage of children under age 5 stunted 

(below -2 SD of height-for-age according to the 

WHO standard) 

CN_NUTS_C_HA2 
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3 Understanding Determinants of Accuracy 

This section describes the work undertaken to address Objective 1, as defined in section 1.1—to 
investigate whether common factors can be identified that drive the accuracy with which a modeled 
indicator surface can be generated using MBG approaches. Methods are described first, followed by 
results and discussion. 

3.1 Methods 

Investigating the potential drivers of geospatial model accuracy was conducted in four parts. First, we 
used model-based geostatistics to generate modeled spatial surfaces for a large set of indictors and 
country surveys. Second, out-of-sample validation was performed for each of these country-indicator 
surfaces and accuracy metrics were calculated. Third, a set of statistics was computed for each country-
indicator pair that described a broad range of attributes associated with each survey and indicator, and we 
examined the correspondence between those attributes and the accuracy of the subsequent modeled 
spatial surface. Fourth, an exercise was conducted to assess the extent to which, given only knowledge of 
those descriptive data attributes, the potential accuracy of a modeled spatial surface could be predicted. 
This section now describes the methodology for each of these components in more detail. 

3.1.1 Model-based geostatistical modeling of DHS indicators 

The Bayesian model-based geostatistical (MBG) framework for generating standardized modeled surfaces 
for DHS indicators has been described in detail in SAR 11 (Gething et al. 2015) and SAR 14 (Burgert et 
al. 2016). A summary description of the approach is included in this report as Annex 2. The study used 
this approach to generate a 5x5km pixel resolution raster surface for each of the 233 country-indicator 
pairs listed in section 2. 

3.1.2 Comparing validation performance statistics across countries and indicators 

3.1.2.1 Out-of-sample validation procedure 

For each of the 233 country-indicator model outputs, a validation procedure was implemented and a set of 
performance statistics was calculated. This proceeded using an out-of-sample validation consisting of a 
four-fold hold-out procedure, whereby 25% of the data points were randomly withdrawn from the dataset; 
the model was run in full using the remaining 75% of data, and the predicted values at the locations of the 
hold-out data were compared to their observed values. This procedure was repeated four times without 
replacement such that every data point was held out once across the four validation runs. Standard 
validation statistics were then computed as measures of the predictive accuracy of the modeled estimates: 

 Correlation (COR): degree of linear association between observed and predicted values. 

 Mean absolute error (MAE): quantifies model precision—i.e. the average magnitude of 
difference between observed and predicted values. This is computed in the same units as the 
variable being predicted (so, if the indicator is a rate expressed on a scale from 0-100%, then the 
MAE will also be a value from 0-100%). 

 Mean square error (MSE): indicates how accurate the model is, encapsulating bias and error, 
with values close to 0 providing an indication that the model is more accurate, and values close to 
1 indicating the model is less accurate. 
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The current study has focused on accuracy of the point estimate as the most important aspect of model 
performance. In some contexts, other performance aspects are also important, but these are not considered 
here. One such measure is the extent to which the model-generated metrics of uncertainty accompanying 
these point estimates capture their true uncertainty. This can be evaluated, for example, by calculating the 
fraction of held-out observations that fall within a given uncertainty interval.  

3.1.2.2 Exploring variation in accuracy 

Once all validation statistics had been computed and assembled, a number of visualizations were 
generated to allow exploratory assessment of patterns of variation in modeled indicator accuracy. First, a 
set of boxplots was generated that summarized the variation in each of the three performance metrics 
(COR, MAE, MSE) by indicator and by country-survey. Second, for each performance metric, color-
coded matrices were generated that tabulated country-surveys against indicators such that each cell 
contained the performance statistic for a given country-indicator combination, with cells colored 
proportional to value. These matrices allow visualization of consistent patterns along rows (i.e., where a 
given indicator has consistently high/low performance across most surveys or, conversely, where a given 
country-survey has consistently high/low performance across most indicators). 

3.1.3 Analysis of correspondence between model performance and explanatory factors 

3.1.3.1 Defining and measuring data attributes 

For each country-indicator pair, eight characteristics of the cluster-level indicator data were defined and 
measured, and subsequently explored for their effect on modeled surface accuracy. These were as 
follows. 

Point density: the national-level density of survey clusters expressed as points per km2.  

N per cluster: the national-level mean number of individuals per cluster included in the denominator for 
a given indicator. 

Cluster-level mean: the mean value of the indicator across all survey clusters.  

Cluster-level variance: the variance of the indicator across all survey clusters. 

Spatial variance: the magnitude of variance of the indicator across all survey clusters that is spatially 
autocorrelated. This was computed using the partial sill parameter from a fitted variogram model. 

Range of spatial correlation: the geographical distance over which the indicator is positively 
autocorrelated (i.e., the maximum distance over which two observed indicator values are likely to 
display smaller variance than two observations at an arbitrarily large separation distance). This was 
estimated using the range parameter from a fitted variogram model. 

Non-spatial variance: the magnitude of variance of the indicator across all survey clusters that is not 
spatially autocorrelated. This was computed using the nugget parameter from a fitted variogram 
model. 

Spatial variance fraction: the fraction of cluster-level variance that is spatially autocorrelated. This was 
calculated simply as the spatial variance divided by spatial plus non-spatial variance. 
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3.1.3.2 Evaluating correspondence between data attributes and modeled surface accuracy 

Bivariate regression models were constructed to enumerate the association between each data attribute 
and each performance metric. Each regression was therefore based on 233 paired observations of a given 
data attribute and a given performance metric, one from each country-indicator combination. Visual 
inspection of the scatterplots suggested that relationships were non-linear in many cases, and so a simple 
polynomial regression was used, with the resulting R2 value recorded. 

3.1.4 Meta-modeling to predict performance a priori  

In addition to investigating separately the effects of each of the different data attributes on modeled 
surface accuracy, we conducted an analysis to consider their combined effects. This was intended to 
explore the possibility of being able to predict, before undertaking any geospatial analysis, the likely 
accuracy of any modeled surface, given only knowledge of key attributes of the cluster-level data. To 
evaluate this, a multivariate regression was conducted for each of the three performance metrics with all 
eight data attributes included as dependent variables. The fitted coefficients and resulting R2 values were 
then extracted and tabulated. 

3.2 Results 

3.2.1 Validation performance statistics across countries and indicators 

Table 3 provides the results of the out-of-sample validation exercise presenting pixel-level performance 
statistics (COR, MAE, MSE) for every country-indicator, while Figure 1 shows the boxplots summarizing 
the variation in these statistics across country-surveys and across indicators. Comparison of the left 
column of boxplots (variation between countries, plotted for each indicator) and right (variation between 
indicators, plotted for each country) shows that the magnitude of variation is broadly similar. In other 
words, the accuracy of modeled surfaces varies by a similar amount across indicators in any given 
country as it does across countries for any given indicator. Some indicators performed consistently well in 
all country-surveys, with ITN access, improved sanitation and water source, and female literacy tending 
to show above average performance (higher correlation, lower MAE and MSE) across all country-
surveys. Conversely, the child vaccination indicators were consistently below average across all metrics 
and all countries. When comparing country-surveys, the picture was generally more mixed: most 
countries displayed a fairly broad range of performance across the different indicators.  

Figure 2, Figure 3, and Figure 4 show the color-coded matrices detailing, respectively, COR, MAE, and 
MSE for each country-indicator combination. Patterns of consistent blue or red shades along rows 
highlight country-surveys that performed consistently well (blue) or poorly (red) relative to others. For 
COR, the Nigeria 2013 DHS performed consistently well, for example, while the Dominican Republic 
2013 DHS fared consistently poorly. For MAE and MSE there were less consistent patterns of variation 
between countries. When assessing by column, patterns of consistent blue or red shades highlight 
indictors that performed consistently well (blue) or poorly (red) relative to others. Corroborating the 
patterns in Figure 1, ITN access demonstrated consistently high COR and low MAE and MSE, and the 
child vaccination indicators the opposite. 
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Table 3 (part 1). Out-of-sample performance statistics (COR=correlation; MAE=Mean Absolute 
Error; MSE = Mean Square Error) for geostatistical models predicting 15 DHS indicators (columns) 
for 16 DHS surveys (rows). See Table 1 and Table 2, respectively, for full details of survey and 
indicator ID codes. 
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CD2013DHS COR 0.770 0.620 0.830 0.670 0.740 0.670 0.870 0.710 0.620 0.590 0.880 0.730 0.880 0.770 0.820 

MAE 0.100 0.120 0.150 0.180 0.090 0.090 0.100 0.040 0.090 0.090 0.070 0.130 0.090 0.170 0.070 

MSE 0.020 0.020 0.040 0.050 0.010 0.010 0.020 0.000 0.010 0.010 0.010 0.020 0.020 0.080 0.010 

BD2014DHS COR   0.480 0.490 0.590 0.800 0.660 0.680 0.630 0.630  0.660 0.720 0.800 0.680 

MAE   0.180 0.200 0.120 0.110 0.100 0.080 0.090 0.050  0.160 0.160 0.030 0.020 

MSE   0.040 0.050 0.020 0.020 0.020 0.010 0.010 0.000  0.040 0.040 0.010 0.000 

DR2013DHS COR 0.430  0.510 0.530 0.450 0.670 0.670 0.430 0.370 0.380  0.390 0.410 0.670 0.660 

MAE 0.070  0.280 0.300 0.100 0.070 0.060 0.120 0.110 0.090  0.110 0.080 0.060 0.030 

MSE 0.010  0.100 0.120 0.010 0.010 0.010 0.020 0.020 0.010  0.020 0.010 0.010 0.000 

EG2014DHS COR  0.450 0.250 0.380 0.540 0.800 0.670 0.480 0.440 0.310  0.460 0.610 0.820 0.070 

MAE  0.210 0.190 0.320 0.160 0.110 0.120 0.150 0.150 0.100  0.140 0.120 0.030 0.010 

MSE  0.070 0.040 0.130 0.050 0.020 0.020 0.040 0.040 0.020  0.030 0.020 0.000 0.000 

GH2014DHS COR 0.630 0.560 0.520 0.500 0.540 0.800 0.850 0.580 0.550 0.520 0.720 0.700 0.850 0.780 0.890 

MAE 0.070 0.120 0.190 0.180 0.130 0.110 0.100 0.100 0.160 0.100 0.080 0.090 0.100 0.080 0.090 

MSE 0.010 0.020 0.050 0.040 0.030 0.020 0.020 0.020 0.040 0.020 0.010 0.010 0.020 0.030 0.020 

KE2014DHS COR 0.610  0.500 0.530 0.530 0.800 0.940 0.830 0.710 0.520 0.880 0.620 0.830 0.790 0.930 

MAE 0.130  0.200 0.200 0.110 0.110 0.060 0.110 0.200 0.070 0.090 0.140 0.140 0.150 0.050 

MSE 0.030  0.050 0.050 0.020 0.020 0.010 0.020 0.060 0.010 0.010 0.030 0.030 0.050 0.010 

KH2014DHS COR 0.570 0.630 0.590 0.590 0.540 0.550 0.770 0.570 0.590 0.560  0.730 0.720  0.770 

MAE 0.140 0.090 0.220 0.240 0.130 0.110 0.090 0.100 0.120 0.060  0.120 0.110  0.140 

MSE 0.030 0.010 0.060 0.080 0.030 0.020 0.010 0.020 0.020 0.010  0.020 0.020  0.040 

LB2013DHS COR 0.730  0.720 0.620 0.570 0.750 0.870 0.660 0.640 0.560 0.810 0.710 0.800 0.710 0.760 

MAE 0.070  0.180 0.190 0.120 0.110 0.090 0.080 0.130 0.090 0.080 0.110 0.120 0.180 0.170 

MSE 0.010  0.050 0.050 0.020 0.020 0.010 0.010 0.030 0.010 0.010 0.020 0.020 0.070 0.060 
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Table 3 (part 2). See part 1 for caption. 
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LS2014DHS COR 0.550 0.550 0.570 0.540 0.520 0.670 0.550 0.620 0.490 0.470  0.520 0.630 0.480 0.830 

MAE 0.150 0.110 0.240 0.220 0.180 0.120 0.040 0.130 0.140 0.130  0.130 0.140 0.160 0.120 

MSE 0.040 0.020 0.070 0.060 0.050 0.030 0.000 0.030 0.030 0.030  0.030 0.030 0.060 0.030 

ML2012DHS COR 0.530 0.590 0.710 0.630 0.680 0.790 0.880 0.720 0.680 0.580 0.700 0.840 0.890 0.860 0.900 

MAE 0.110 0.120 0.190 0.190 0.120 0.140 0.070 0.060 0.150 0.080 0.080 0.110 0.110 0.120 0.050 

MSE 0.020 0.020 0.050 0.050 0.020 0.030 0.010 0.010 0.040 0.010 0.010 0.020 0.030 0.030 0.010 

NG2013DHS COR 0.610  0.820 0.810 0.850 0.860 0.920 0.790 0.770 0.600 0.850 0.890 0.910 0.850 0.860 

MAE 0.060  0.170 0.170 0.080 0.100 0.090 0.060 0.130 0.060 0.080 0.110 0.110 0.130 0.110 

MSE 0.010  0.050 0.050 0.010 0.020 0.020 0.010 0.020 0.010 0.010 0.020 0.020 0.040 0.030 

NM2013DHS COR 0.650 0.490 0.470 0.450 0.460 0.700 0.800 0.500 0.500 0.440 0.840 0.560 0.750 0.710 0.820 

MAE 0.140 0.120 0.240 0.220 0.180 0.110 0.060 0.170 0.180 0.140 0.060 0.170 0.100 0.080 0.150 

MSE 0.030 0.020 0.080 0.060 0.050 0.020 0.010 0.050 0.050 0.030 0.010 0.040 0.020 0.020 0.050 

RW2015DHS COR 0.550 0.520 0.200 0.340 0.560 0.540 0.630 0.580 0.530 0.530 0.830 0.650 0.530 0.660 0.580 

MAE 0.070 0.100 0.140 0.150 0.150 0.090 0.070 0.110 0.130 0.090 0.080 0.120 0.070 0.150 0.020 

MSE 0.010 0.020 0.020 0.030 0.030 0.010 0.010 0.020 0.030 0.010 0.010 0.020 0.010 0.050 0.000 

SL2013DHS COR 0.730 0.810 0.600 0.500 0.570 0.830 0.850 0.650 0.660 0.450 0.830 0.640 0.780 0.930 0.900 

MAE 0.100 0.080 0.180 0.170 0.140 0.120 0.090 0.080 0.140 0.080 0.070 0.110 0.140 0.090 0.070 

MSE 0.020 0.010 0.050 0.040 0.030 0.020 0.010 0.010 0.030 0.010 0.010 0.020 0.030 0.020 0.020 

TG2013DHS COR 0.680 0.730 0.520 0.620 0.690 0.810 0.850 0.630 0.610 0.580 0.710 0.790 0.840 0.940 0.870 

MAE 0.080 0.090 0.180 0.180 0.110 0.100 0.110 0.070 0.130 0.080 0.080 0.110 0.100 0.080 0.130 

MSE 0.010 0.010 0.050 0.050 0.020 0.020 0.020 0.010 0.020 0.010 0.010 0.020 0.020 0.010 0.040 

ZM2013DHS COR 0.580  0.510 0.420 0.510 0.650 0.770 0.680 0.630 0.520 0.760 0.490 0.750 0.800 0.850 

MAE 0.080  0.180 0.180 0.110 0.090 0.120 0.130 0.140 0.110 0.090 0.120 0.130 0.150 0.070 

MSE 0.010  0.050 0.050 0.020 0.010 0.020 0.030 0.030 0.020 0.010 0.020 0.030 0.050 0.020 
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Figure 1. Boxplots summarizing variation in performance metrics. Left column shows, for each 
indicator, a boxplot summarizing variation in performance metrics between surveys. Right column 
shows, for each survey, a boxplot summarizing variation between indicators. Rows correspond to 
the three performance metrics: correlation (top); Mean Absolute Error (middle); Mean Square 
Error (bottom). The red dashed line shows the median value for each performance metric. See 
Table 1 and Table 2, respectively, for full details of survey and indicator ID codes. 
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Figure 2. Out-of-sample performance (correlation) for geostatistical models predicting 15 DHS 
indicators (columns) for 16 DHS surveys (rows). See Table 1 and Table 2, respectively, for full 
details of survey and indicator ID codes. The value in each cell is the observed correlation 
performance for that survey-indicator pair, with the color-coding scaled according to levels of 
correlation (high correlation = blue, low correlation = red). 
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Figure 3. Out-of-sample performance (Mean Absolute Error, MAE) for geostatistical models 
predicting 15 DHS indicators (columns) for 16 DHS surveys (rows). See Table 1 and Table 2, 
respectively, for full details of survey and indicator ID codes. The value in each cell is the 
observed MAE performance for that survey-indicator pair, with the color-coding scaled according 
to levels of MAE (high MAE = red, low MAE = blue). 
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Figure 4. Out-of-sample performance (Mean Square Error, MSE) for geostatistical models 
predicting 15 DHS indicators (columns) for 16 DHS surveys (rows). See Table 1 and Table 2, 
respectively, for full details of survey and indicator ID codes. The value in each cell is the 
observed MSE performance for that survey-indicator pair, with the color-coding scaled according 
to levels of MSE (high MSE = red, low MSE = blue). 
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3.2.2 Correspondence between model performance and explanatory factors 

Figure 5 and Table 4 give the results of the bivariate analysis to quantify the correspondence between 
each of the eight attributes of the cluster-level survey data and performance (COR, MAE, MSE) of the 
subsequent modeled surface based on those data. Table 4 details the R2 values associated with each. COR 
was most strongly associated with the magnitude (and fraction) of spatially autocorrelated variance, and 
with the number of individuals sampled at each cluster. Conversely, MAE and MSE were most strongly 
associated with the magnitude of overall (cluster-level) and non-spatial variance. Figure 5 plots show the 
scatter of data points (each datum is an observed performance statistic for a given country-indicator 
modeled surface) overlaid with a fitted polynomial regression model. All relationships with higher R2 
values tended to be close to linear (for example spatial variance versus COR, or non-spatial variance 
versus MAE and MSE). The plots for N per cluster display a dual inflexion pattern for all three 
performance metrics, with performance improving rapidly as N increases up to a threshold of around 50 
individuals per cluster, before declining as N reaches round 150. This may be a confounding effect 
whereby very few clusters have numbers substantially greater than 50, and those that do may over-
represent certain country-surveys and/or indicators that happen to be associated with worse performance.  

Table 4. Bivariate correspondence between DHS indicator data characteristics and out-of-sample 
performance statistics (correlation, COR; Mean Absolute Error, MAE; Mean Square Error, MSE). 
Correspondence was assessed using R2 associated with fit of polynomial model regression 
predicting each performance statistic as a polynomial function of each data characteristic.  

Cluster-level survey data attribute 
R2 with 

COR 
R2 with 

MAE 
R2 with 

MSE 
Point density (per km2) 0.158 0.013 0.007 

N per cluster 0.328 0.384 0.250 

Cluster-level mean 0.109 0.19 0.117 

Cluster-level variance 0.171 0.438 0.479 

Spatial variance 0.493 0.098 0.141 

Range of spatial correlation 0.081 0.017 0.016 

Non-spatial variance 0.020 0.636 0.599 

Spatial variance fraction 0.430 0.033 0.008 
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Figure 5 (part 1). Relationship between DHS indicator data characteristics (x-axes) and out-of-
sample performance of geostatistical models generating predicted surfaces of those indicators (y-
axes). Data characteristics assessed were density of survey clusters (1st row); mean number of 
individuals sampled per cluster (2nd row); cluster-level mean indicator value (3rd row); and cluster-
level indicator variance (4th row). Model performance metrics assessed were correlation (left 
column); Mean Absolute Error (MAE, center column); and Mean Square Error (MSE, right column). 
Shown in each panel are the plotted values from each of 233 survey-indicators (grey dots) along 
with a fitted polynomial regression model and resulting R2 value. 
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Figure 5 (part 2). See part 1 for caption. 
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3.2.3 Meta-modeling to predict performance a priori 

Table 5 shows the results from the multivariate modeling exercise designed to test the potential to predict 
modeled surface accuracy a priori, that is, in advance of conducting the geostatistical modeling, based 
only on knowledge of the eight survey data attributes. The R2 values are fairly similar between the three 
performance metrics, ranging from 0.73 to 0.77. This means that about three-quarters of the variation in 
COR, MAE, and MSE between modeled surfaces for different indicators and different country-surveys 
can be explained by these eight data attributes. Consistent with the bivariate exploration just described, 
the individual attribute playing the largest role within the multivariate models was the non-spatial 
variance, which was significant at the 99.9% level in all three models. Interestingly, the second most 
important attribute was the cluster-level mean, which was significant at the 99% level in all three models, 
despite having a relatively low R2 in the bivariate analyses. 

Table 5. Coefficients from multivariate regression predicting out-of-sample performance of 
geostatistical models as a function of response data characteristics. Separate models were built 
to predict performance according to three separate out-of-sample metrics: Correlation, Mean 
Absolute Error (MAE), and Mean Square Error (MSE). Significance codes: 0 ‘***’; 0.001 ‘**’; 0.01 ‘*’; 
0.05 ‘°’  

 Correlation MAE MSE 

Cluster-level survey data 
attribute 

Estimate P-value Signif. Estimate P-value Signif. Estimate P-value Signif. 

Point density (per km2) 0.261 0.063 ** 0.279 0.043 ° 0.278 0.046 * 

N per cluster -0.000 0.683  -0.000 0.546  -0.000 0.636  

Cluster-level mean 0.008 0.003 ** 0.007 0.011 ** 0.008 0.006 ** 

Cluster-level variance 0.252 0.014 * 0.202 0.056 * 0.154 0.159  

Spatial variance -0.087 0.357  -0.026 0.788  0.012 0.903  

Range of spatial 
correlation 

-0.001 0.009 ° -0.001 0.007 * -0.002 0.001 ** 

Non-spatial variance 0.506 0.000 *** 0.524 0.000 *** 0.607 0.000 *** 

Spatial variance fraction 0.007 0.129 ° 0.006 0.223  0.007 0.169  

          

Out-of-sample R2 0.769 0.733 0.756 
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3.3 Discussion 

The analyses presented in this section provide insight into the amount and magnitude of variation in 
accuracy of modeled spatial surfaces representing different DHS indicators and deriving from different 
DHS country-surveys. Some indicators perform consistently above average, and other consistently below. 
Similarly, certain country-surveys have a tendency to yield surfaces more or less accurate than other 
countries. In addition to describing these variations, the research has explored whether certain attributes 
of DHS survey data seem to be systematically associated with likely accuracy outcomes.  

The overall amount of variation in cluster-level indicator values, and the extent to which this variation is 
spatially autocorrelated, are strong drivers of the accuracy of subsequent geostatistical maps. The amount 
of survey “effort” in terms of the density of survey clusters and the number of individuals surveyed within 
each cluster tended to be only weakly associated with modeled surface accuracy. Intuitively, these data 
volume metrics might be expected to strongly influence map accuracy, but the result may suggest simply 
that, since DHS surveys are designed to a broadly standardized sample specification, there is too little 
variation in these metrics across surveys and indicators to yield significant impact on variation in 
accuracy. It may also be a saturation effect, i.e., that the density of data and respondents is sufficient in 
most surveys to yield reasonably accurate maps, and variations around those levels have little further 
effect.  

The results of the multivariate analyses are particularly interesting. The large R2 values indicate that the 
accuracy of any given modeled DHS indicator surface, generated using the standardized geostatistical 
procedure described, is relatively predictable a priori based only on easily computed attributes of the pre-
modeled cluster-level data. This means that, when deciding which indicators to potentially subject to a 
geostatistical mapping exercise, it should be possible to predict reasonably well whether the resulting 
maps will or will not meet a particular level of accuracy, and thus whether the exercise may or may not be 
worthwhile. Further, when a survey is to be prospectively designed to facilitate geostatistical spatial 
modeling and create modeled surfaces, the importance of different data attributes may be considered and 
used to influence that design.  
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4 Understanding Utility of Spatial Modeling for Generating 

Indicators at Second-Level Subnational Administrative Levels 

This section describes the analysis conducted to address Objective 2, as presented in section 1.2—to 
explore accuracy when using spatial modeling to generate aggregate indicator estimates for second-level 
administrative levels, below the standard first-level units reported in DHS surveys. Methods are described 
first, followed by results and discussion. 

4.1 Methods 

Traditional DHS survey design, analysis, and presentation of results has been oriented around provision 
of estimates at the national level and at the first subnational unit (SNU1) level, typically called provinces, 
states, or regions. The geospatial work undertaken by DHS in recent years has enabled the creation of 
fine-scale maps providing indicator predictions across 5x5 km pixelated grids for selected countries. 
These maps represent the finest level of detail that is considered appropriate to predict using current data 
and geostatistical techniques (with some limitations on even higher resolution maps being imposed by, 
among other factors, the DHS geo-randomization procedure to anonymize cluster coordinate data).  

This geospatial work has been motivated in part by an increasing call from the international development 
community and national stakeholders for reliable subnational information on demographic and health 
indictors to support program planning and delivery at levels more granular than SNU1. In addition to the 
very fine-scale pixel-level maps, therefore, there is also a remit to generate indicator estimates that 
represent aggregated values (e.g., indicator means) at the next lowest administrative level (e.g. SNU2, 
often called districts) at which detailed subnational planning is increasingly carried out. Standard DHS 
surveys are powered to yield pre-specified precision in indicator estimates computed directly from the 
survey (using appropriate survey weights) at the SNU1 level. The work described in this section was 
conceived to investigate the potential for using the geostatistical modeling framework to generate 
sufficiently precise aggregate indicator estimates at lower administrative levels, with the completion of 
the 2014 Kenya DHS offering a unique opportunity to address this issue. 

4.1.1 The 2014 Kenya DHS 

The organization of administrative tiers in Kenya was, prior to 2013, similar to many other countries 
across the world: eight provinces (SNU1), subdivided into 46 districts (SNU2), which were further 
subdivided into 262 divisions (SNU3). Following the adoption of the 2010 Kenyan constitution, however, 
this system was substantially revised as part of efforts to facilitate a process of devolved government. The 
SNU1 provinces were abolished and the 46 districts previously representing SNU2 were reconfigured to 
47 counties (including Nairobi), and promoted to SNU1. These reorganizations meant that, when the 2014 
DHS survey was designed, a decision was taken to power the survey to yield estimates at the new SNU1 
(i.e., county) level. In practice, this meant a dramatic increase in survey effort compared both with most 
other DHS countries and with the preceding Kenya DHS survey conducted in 2008, which used the 
earlier administrative structure. The 2014 survey incorporated 40,300 households compared with 9,936 in 
the 2008 survey. 
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4.1.2 Overview of approach 

The design of the 2014 Kenya DHS provides a unique opportunity to test the ability of geostatistical 
modeled surfaces to generate sufficiently accurate indicator estimates at what, in nearly every country 
other than Kenya, would be considered the SNU2 level. The approach proceeded in four main steps. 

The geospatial model was used to generate County-level indicator estimates based on the full 2014 Kenya 
DHS data set, and these were compared with the directly calculated (i.e. weighted mean) estimates 
presented in the 2014 Kenya DHS report. For later reference, pixel-level modeled surfaces were also 
produced for each indicator using the full data set. 

The full 2014 Kenya DHS data set was then artificially thinned by progressive intervals, with the most 
thinned version replicating the survey design of a standard DHS—based on the 2008 Kenya DHS.  

The thinned data sets were then used to generate both pixel-level and County-level geospatial estimates 
and the effects of thinning on performance were measured.  

The relative accuracy of county-level estimates derived from thinned data sets was compared between the 
geospatial model and directly calculated (weighted mean) estimates. 

These methodological steps are now described in more detail. 

4.1.3 Generation of indicator estimates at County level with appropriate uncertainty (based 

on full survey) 

In the first step, the functionality of the standardized geostatistical framework for generating modeled 
DHS indicator surfaces was extended to allow “joint simulation”—the computational procedure necessary 
to provide correct uncertainty intervals for those estimates. For a description of the theory and 
computational challenges associated with geostatistical joint simulation, see Gething et al. (2010). This 
extended model framework was then used, initially, with the full Kenya 2014 survey to generate County-
level estimates for 12 DHS indicators (see Table 2 for definitions). The purpose of this initial set of 
estimates was twofold: first, to allow comparison between County-level estimates based on geostatistical 
models versus direct calculation of indicators and confidence intervals using the weighted survey data and 
standard DHS formulas for standard errors; second, to provide a set of “gold-standard” estimates, based 
on all available data in the County-powered 2014 Kenya DHS. All subsequent estimates based on thinned 
sets were compared against these “gold-standard” estimates, as described next.  

4.1.4 Creating randomly thinned survey data 

In the second step, artificially thinned versions of the 2014 Kenya DHS survey were generated to form the 
basis for subsequent analyses. First, a thinned version was generated to emulate as closely as possible the 
characteristics of a standard DHS survey. Because the 2008 Kenya DHS survey was implemented prior to 
the 2013 administrative reorganization, it provided a template for such a design. The 2008 survey 
sampled 398 clusters across the country, compared with 1,594 in the 2014 survey. As such, an artificially 
thinned version of the 2014 survey containing just 24% of its full complement of clusters would replicate 
the sample size of the 2008 survey. Rather than remove the surplus 76% of points at random nationwide, 
it was important to emulate as closely as possible the subnational distribution and structure of the 2008 
survey, which was designed within sampling strata as per standard DHS sampling procedures. The 2008 
survey used five sampling strata: a rural and urban stratum for each of the seven original Kenyan 
provinces, plus a single urban stratum for Nairobi. The number of clusters in the 2008 survey within each 
of the five strata is shown in the “24%” thinning column in Table 6. To create equivalently sampled 
versions of the 2014 dataset, the full 2014 survey was reduced by randomly removing clusters within each 
stratum to achieve the required reduction to match the 2008 cluster numbers. For subsequent 
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experimentation, it was important to minimize artefactual outcomes linked to the random selection of 
points in any one draw. As such, the process was repeated 100 times to yield 100 versions of the 
artificially thinned 2014 dataset. To explore the impact of thinning along a continuum, six further 
intermediate levels of thinning were defined and the process repeated for each. In total then, 100 versions 
of the 2014 survey were defined, artificially thinned to 24%, 35%, 45%, 56%, 67%, 78% and 88% of the 
complete survey. Table 6 presents the full specifications of these sets, and an example of a single draw for 
each thinning level is mapped in Figure 6.  

Table 6. Number of survey clusters by DHS strata under progressive levels of artificial thinning 
relative to the full Kenya 2014 survey (100%). Thinning of 24% represented a survey equivalent to 
the 2008 Kenya DHS. 

Stratum 
(based on 2008 DHS design) 

Thinning level  
(% of full survey) 

 24% 35% 45% 56% 67% 78% 88% 100% 

Central-R 41 50 60 70 79 89 99 109 

Central-U 8 16 24 33 41 50 58 67 

Coast-R 23 34 45 57 68 80 91 103 

Coast-U 27 36 46 55 65 74 84 94 

Eastern-R 49 67 85 103 122 140 158 177 

Eastern-U 5 17 29 41 54 66 78 91 

Nairobi-U 52 52 53 53 54 54 55 56 

Northeastern-R 21 26 31 36 42 47 52 58 

Northeastern-U 6 10 14 18 22 26 30 34 

Nyanza-R 45 57 70 83 95 108 121 134 

Nyanza-U 13 21 30 38 47 55 64 73 

Rift valley-R 50 85 121 157 193 229 265 301 

Rift valley-U 10 31 52 73 94 115 136 158 

Western-R 37 45 53 61 70 78 86 95 

Western-U 11 15 20 25 29 34 39 44 

TOTAL 398 562 733 903 1,075 1,245 1,416 1,594 
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Figure 6. Examples of randomly thinned survey cluster sets at seven levels of thinning. 
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4.1.5 Evaluating performance with randomly thinned survey data 

In the third step, for each of the 100 randomly thinned sets at the seven thinning levels, the geostatistical 
model was implemented to generate, for each indicator, a 5x5 km pixel-level modeled surface. Because 
this was now created using geostatistical joint simulation, it was straightforward to compute a population-
weighted average within each County. This operation involved a weighted mean operation across all 
pixels where weights were proportional to the number of people living in each 5x5 km pixel, as defined 
using the WorldPop population grid for Kenya (www.worldpop.org.uk). The following two paragraphs 
describe the evaluation of performance of these two levels of modeled estimate using the thinned data: 
pixel level and County level. 

4.1.5.1 Evaluating performance with thinned survey data: pixel level 

The accuracy of pixel-level indicator estimates based on thinned surveys was assessed using the same 
out-of-sample validation procedure described in section 3.1.2.1, i.e., against cluster-level observations 
directly form the survey, randomly removed prior to fitting each model and held aside for reference to the 
predicted values at each location. By definition, it was only possible to validate the pixel-level predictions 
up to the 88% thinning level (i.e., not at zero thinning, the 100% level), since the latter level leaves no 
clusters available for hold-out. For each indicator and at each thinning level, the COR, MAE, and MSE 
performance statistics were computed for each of the 100 draws, along with the mean across the draws. 
Plots were then generated showing how the performance metrics varied as a function of thinning level. 

4.1.5.2 Evaluating performance with thinned survey data: County level 

Assessing the accuracy of geospatial County-level indicator estimates required a different approach than 
the one used for the pixel-level estimates described above. Although pixel-level estimates can be 
compared directly with held-out cluster-level observations from the survey, there are no directly observed 
County-level observations to compare against. Instead, there are two different approaches that can act as a 
gold-standard estimate against which to compare the estimates derived from thinned sets. One option is to 
use the directly calculated DHS indicator point estimates that are calculated as a simple weighted mean of 
the survey observations within each County, with weights reflecting population weighting, adjustments 
for non-response, and other factors. An alternative option is to consider as the gold-standard reference the 
geospatial County-level estimates made using the full 2014 survey, as described in section 4.1.3.  

This distinction is an important one for many of the subsequent results in this section because, as 
described in more detail later, the geospatially derived versus directly calculated County-level estimates 
often differ by a non-negligible amount, and so the choice of one or the other as a gold-standard reference 
will inevitably heavily influence the resulting performance statistics. The relative merits of each approach 
are discussed in more detail subsequently, but neither is clearly superior. As such, all subsequent 
assessments of performance were carried out in duplicate: one set using the geospatially derived full-
survey County-level estimates as the gold standard, and another using the directly calculated estimates.  

As with the pixel-level tests, County-level performance was evaluated for each indicator, at each thinning 
level, and over 100 random draws, generating the COR, MAE, and MSE performance statistics for each. 
Plots were then generated showing how the performance metrics varied as a function of thinning level 
using both alternative gold-standard references. 

 

http://www.worldpop.org.uk/
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4.1.6 Comparison of geospatial versus directly calculated (weighted mean) indicator 

accuracy 

As well as investigating the impact of progressively smaller survey sample sizes on the performance of 
spatial modeled surfaces in absolute terms, a practical question concerns how this performance compares 
in relative terms with the default approach of directly computing weighted means of the survey data. This 
question becomes particularly pertinent if the goal of estimating indicators accurately at SNU2, rather 
than SNU1, becomes more generally pursued in future DHS and other nationally representative surveys. 
One approach for ensuring adequate accuracy at SNU2 level is, of course, to dramatically increase sample 
size, as was done for the 2014 Kenya DHS. This is inevitably laborious and expensive. A key question, 
then, is whether the use of geostatistical estimation would allow equivalent accuracy at SNU2 level 
without the need for such a large increase in sampling effort.  

To directly enumerate the potential added value of using geostatistical models to generate SNU2 
estimates, the concept of “equivalent survey size” is introduced. This approach attempts to enumerate 
how much larger a survey would need to be when used in conjunction with a default weighted mean 
indicator calculation approach if it were to match the accuracy provided by a standard-sized survey in 
concert with a geostatistical model. Any additional survey size required by the former approach to match 
the performance of the latter can then be interpreted as the added value of the geostatistical model—since 
it has achieved the same result with the lesser sampling effort. 

Our study implemented this approach as follows: First, County-level estimates were made using the 
geostatistical model based on the fully thinned survey draws (with only 24% of the full complement of 
clusters in each draw, and replicating the sample size of the standard 2008 Kenya DHS survey) and the 
performance of these estimates evaluated against the gold-standard references. Second, weighted mean 
County-level estimates were made based on usual DHS weighted mean calculations, but using thinned 
surveys (every level of thinning between 24% and 88%, as specified in Table 6). Again, performance was 
evaluated against both gold-standard references. The “equivalent survey size” was calculated by 
identifying the level of thinning that yielded DHS weighted mean calculations with performance 
equivalent to the geostatistical estimates based on the 24% (fully thinned) survey. This procedure was 
carried out for all indicators and with the usual 100 draws for each thinning level. 

4.2 Results 

4.2.1 Comparison of County-level geostatistical indicator estimates versus directly calculated 

(weighted mean) indicators, based on the full 2014 Kenya DHS survey 

Figure 7 visualizes the correspondence between the estimates of County-level indicators based on the full 
Kenya 2014 survey, using the default DHS weighted-mean-of-survey-data calculation and standard error 
formulas (y-axes), and the equivalent County-level estimates made using the geostatistical model (x-axes). 
Each plotted cross represents the pair of estimates for a single Kenyan County. As Figure 7 shows, most 
crosses cluster tightly around the identity (i.e., 1:1) line. Although for some indicators there is noticeable 
deviation from the 1:1 line when assessing point estimates (i.e., the center of each cross), the uncertainty 
intervals fail to intersect that line only rarely—indicating that it is uncommon for the geostatistical and 
directly calculated estimates to differ with statistical significance.  

More detailed results of the comparison between geostatistical and directly calculated County-level 
estimates are shown for each indicator in Annex 1, Figure 11 A-L. These additional plots include County-
by-County comparisons of the two estimates, along with individual scatterplots comparing the point 
estimates and the upper and lower uncertainty bounds of each estimate.  
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Figure 7. Comparisons of County-level estimates as derived directly from 2014 Kenya DHS survey 
data versus from geostatistical model for each DHS indicator. Each cross represents estimates for 
a particular County, with length of lines representing 95% credible/confidence intervals around 
estimates. See Table 2 for full details of indicator ID codes. 
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4.2.2 Performance of geospatial estimation with thinned survey data: pixel level 

Figure 8 shows the results of the evaluation of the impact of survey size on performance of the 
geostatistical model in generating pixel-level estimates (i.e., modeled surfaces). For each indicator, a plot 
is shown for COR, MAE, and MSE and each shows how the performance statistic changes as the survey 
size ranges between the full 2014 Kenya DHS (100%) and the standard DHS size (24% of the full set). At 
each thinning level, the performance statistic calculated from each of the 100 random draws is plotted 
(grey dots) along with the mean value across the 100 sets at each thinning level (black dots and line). The 
general tendencies displayed reflect what might be expected: correlation nearly always increases with 
increasing survey size, while MAE and MSE decrease, reflecting steadily improving precision and 
accuracy. These tendencies are more pronounced for some indicators than other, however, and the trends 
are not always monotonic. This latter feature potentially suggests that even averaging over 100 random 
realizations of each thinned set does not fully mitigate stochasticity associated with the particular set of 
clusters retained for each thinning level. 
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Figure 8 (part 1). Performance of geospatial model (correlation, left column; mean absolute error, 
middle column; mean square error, right column) in predicting pixel-level indicator values using 
progressively thinned survey sets. Each thinning level was assessed using 100 randomly thinned 
subsets (grey dots) and the mean across all sets is shown in solid black. Each row is a separate 
indicator. See Table 2 for details of Indicator ID codes. 

 



28 

Figure 8 (part 2). See part 1 for caption. 
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Figure 8 (part 3). See part 1 for caption. 
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4.2.3 Performance of geospatial estimation with thinned survey data: County level 

Figure 9 shows the results of the evaluation of the impact of survey size on performance of the 
geostatistical model in generating County-level estimates. Again, for each indicator, a plot is shown for 
COR, MAE, and MSE and each shows how the performance statistic changes as the survey size ranges 
across the different thinning levels. Because there are two alternative gold-standard references for these 
County-level estimates, two sets of results are shown on each plot. Red lines denote performance against 
the full-survey weighted-mean-of-survey-data indicator estimates, and black lines denote performance 
against the full-survey geostatistical estimates. Once again, broad patterns appear as expected, with 
performance progressively improving with increasing survey size for all three performance metrics. 
Unlike with pixel-level assessment, the trends at County-level are much smoother, with correlation nearly 
always increasing monotonically with survey size, and MAE and MSE monotonically decreasing. 
Interestingly, the trends tend to be non-linear: performance gains are progressively smaller as survey size 
is progressively increased, such that much of the gain is achieved in moving from 25% to 50% of the full 
survey, with a move from 50% to 75%, or even to 100%, contributing proportionately less gain in 
performance. 

Comparison of the red versus black lines on each plot demonstrates the importance of the choice of gold-
standard reference. While use of either choice yields the same qualitative trends in performance versus 
survey size, the performance at any given survey size is always much better when using the geospatially-
derived gold standard rather than the directly calculated weighted-mean-of-survey-data. This is not 
surprising since, as we have already seen in Figure 7 and Figure 11, the two candidate gold standard 
estimates often differ considerably for any given County. Of course, this is partly by design because the 
geostatistical estimates incorporate various additional or alternative sources of information compared with 
the directly calculated weighted means with the deliberate purpose of better capturing fine-scale variation 
(and thus ultimately to allow more accurate aggregate estimates). In particular, the geostatistical 
estimates: (1) borrow strength across County boundaries; (2) are informed by a suite of environmental 
and sociodemographic covariates; and (3) use a different underlying representation of population 
distribution when computing weighted means (gridded population rasters from WorldPop, whereas DHS 
survey design and weights draw on census data). Since these features are all retained in the geostatistical 
modeling based on thinned surveys it is expected that the geostatistical gold standard will be closer to the 
thinned estimates than will the directly calculated weighted means. 
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Figure 9 (part 1). Performance of geospatial model (correlation, left column; mean absolute error, 
middle column; mean square error, right column) in predicting County-level mean indicator values 
using progressively thinned survey sets. Performance was evaluated against two alternative gold 
standards: directly-calculated DHS indicator estimates (red) and geostatistical estimates based on 
full (unthinned) original survey (black). Each thinning level was assessed using 100 randomly 
thinned subsets (grey/pink dots), and the mean across all sets is shown in solid black/red. Each 
row is a separate indicator. See Table 2 for details of Indicator ID codes. 
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Figure 9 (part 2). See part 1 for caption. 
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Figure 9 (part 3). See part 1 for caption. 
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4.2.4 Comparison of geospatial versus directly calculated (weighted mean) indicator 

accuracy at County level 

Figure 10. Performance of geospatial model for estimating County-level mean indicator values 
based on standard DHS survey sizes. Geospatial model performance is expressed using the 
“equivalent survey size” concept, indicating the size of survey that would have yielded equivalent 
performance in the absence of a geospatial model. Performance was measured against two gold 
standards: geospatial County-level estimates based on the full survey (black/grey boxplots on 
left) and direct DHS indicator estimates based on the full survey (black/pink boxplots on right). 
Boxplots show distribution of performance values across all 12 indicators and for the three 
metrics: Correlation (COR), Mean Absolute Error (MAE), and Mean Square Error (MSE). 

 

This section summarizes the results of the exercise to estimate the “equivalent survey size” yielded by 
using the geostatistical model with the fully thinned survey compared with larger surveys using only 
directly calculated weighted-means-of-survey-data. Figure 10 presents six boxplots. These represent the 
variation across County-level indicator estimates for each of the three performance metrics when assessed 
against the two alternative gold-standard references. Table  provides the full breakdown of performance 
metrics per indicator for all 12 indicators. Again, it is clear that the results differ markedly depending on 
which gold standard is used. When using the geostatistical-derived gold standard, the geostatistical 
County-level estimates based on the standard DHS survey size (24% thinning) are approximately as 
accurate as a survey three times larger (64% thinning to achieve same correlation, 78% thinning to 
achieve same MAE, 75% thinning to achieve same MSE) using the default weighted mean approach. 
However, if the gold standard is switched to the DHS County-level estimates based on the full-set, the 
added value of geostatistical modeling is much diminished, equivalent to a survey of about 32% thinning 
and so adding only modest value above the 24% thinned survey on which the model was based.  



35 

Table 7. Performance of geospatial model for estimating County-level mean indicator values 
based on standard DHS survey sizes. Geospatial model performance is expressed using the 
“equivalent survey size” concept, indicating the size of survey that would have yielded equivalent 
performance in the absence of a geospatial model. Performance was measured against two gold 
standards: geospatial County-level estimates based on the full survey (left hand columns) and 
direct DHS indicator estimates based on the full survey (right hand columns). Three performance 
metrics are given: Correlation (COR), Mean Absolute Error (MAE), and Mean Square Error (MSE). 

 Equivalent survey size as % of full 
DHS (Gold standard: geospatial 
estimate based on full survey) 

Equivalent survey size as % of 
full DHS (Gold standard: DHS 
estimate based on full survey) 

 COR MAE MSE COR MAE MSE 

IN_AHTOBCMNON 78 88 88 35 35 35 

CHVACCCDP3 56 88 88 24 24 24 

CHVACSCMSL 88 88 88 24 35 35 

CNNUTSCHA2 45 78 67 24 35 35 

EDLITRMLIT 78 88 88 45 24 35 

EDLITRWLIT 56 56 56 35 35 35 

FPCUSMWMOD 56 56 56 35 35 35 

MLITNAPACC 45 67 56 24 24 24 

RHANCNWN4P 56 78 67 35 35 35 

RHDELPCDHF 67 78 67 35 35 35 

WSSRCEPIMP 56 88 88 24 35 35 

WSTLETPNFC 88 88 88 35 24 35 

Mean 64.1  78.4  74.8  31.3  31.3  33.2  

4.3 Discussion 

Using the unique opportunity provided by the exceptionally densely sampled 2014 Kenya DHS survey, 
the analyses presented in this section provide new insights about the potential utility of geostatistical 
models for generating aggregated indicator estimates at administrative levels below SNU1, as well as 
showing more broadly the impact of survey size on model performance at different levels.  

First, we see that indicator estimates made at county-level are broadly similar when generated using the 
geostatistical model versus calculating them directly from the weighted survey data. We do, however, 
also see important differences. These arguably represent the fact that geostatistical models first attempt to 
estimate fine-scale pixel-level indicator values (taking into account information from covariates and 
drawing strength from data points within a radius) before these are subsequently aggregated up to the 
desired spatial units. Other sources of disparity will arise from the fact the geostatistical aggregate 
estimates draw upon a pixel-level representation of the population distribution, rather than the coarser 
census enumeration areas on which the DHS population-based sampling frame is designed. 

Second, we see that surveys with greater sampling density than a standard DHS design yield 
improvements in the results of geostatistical models, whether at pixel level (i.e., the modeled surfaces) or 
when those surfaces are aggregated to generate mean indicator estimates across administrative regions. 
These improvements are more marked and more consistent in the case of the aggregated estimates than 
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the pixel-level estimates. The rate of improvement is not linear, and most gains are made with the first 
doubling of cluster numbers rather than the second. 

Third, we see that the use of a geostatistical model to estimate aggregated indicator estimates tends to 
yield more precise estimates than the default approach of directly calculating weighted means of survey 
data. The extent of this improvement is heavily dependent on the choice of gold standard reference. Given 
the theoretical advantages of the full-survey geostatistical-derived estimates described, it is reasonable to 
consider these comparisons as most informative. Under this rationale, we see that, on average across the 
indicators and performance metrics, the use of a geostatistical model based on a standard DHS survey to 
estimate indicators at “standard” SNU2 level (i.e., at a level of geographical aggregation equivalent to 
SNU2 in most countries) yield results of equivalent accuracy to a survey three times larger in the absence 
of a geostatistical model. This finding raises the prospect of wider use of geostatistical methods to 
potentially reduce the sampling effort, and thus the resource cost, of future DHS surveys. 

4.3.1 Implications and recommendations 

The extent to which these findings can be generalized to other countries and settings can ultimately only 
be verified by further quantitative analysis using new data sets. However, it seems likely that similar 
results would be expected, since the main factors driving the relationships explored here, namely the 
design of DHS surveys and the intrinsic statistical properties of the resulting indicator data, tend to be 
broadly similar across settings. One practical consideration, of course, is the definition of SNU2 units in 
different countries. In this analysis we have used the Kenya County level as a proxy that is approximately 
equivalent to the size of SNU2 units found in most other countries across Africa and beyond. Where this 
approximation is not appropriate – for example in a country with SNU2 units substantially smaller than 
the Kenyan County – then the rule-of-thumb results presented here would need to be modified.  

An immediate and general recommendation arising from this work is that the integration of geospatial 
methods in the survey design and subsequent data analysis stages should be considered for future DHS 
surveys, especially if a desired outcome is to provide precise estimates below the SNU1 level. This 
integration will provide more precise estimates below the SNU1 level and do so with lesser requirements 
for large sample sizes. 

To fully operationalize this recommendation, the analyses presented here would require a number of 
extensions. First, repeating the work implemented here for the 2014 Kenya DHS to at least one other 
survey with similarly dense sampling would provide verification of the generalizability of the findings. 
Second, a generalized framework could be envisioned that would allow prospective survey design to be 
carried out to achieve pre-specified levels of precision using the geospatial model, taking into account the 
exact nature of SNU2 units in a given country. Such a framework would require the current analysis to be 
repeated for a synthetic set of administrative units at progressively smaller levels of aggregation, to 
provide reference results against which actual units in other countries could be compared.  
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Annex 1. Further Results: Kenya County Level Comparisons 

(Unthinned)  

Figure 11A. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is 100-AH_TOBC_M_NON. 
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Figure 11B. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is CH_VACC_C_DP3. 
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Figure 11C. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is CH_VACC_C_MSL. 
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Figure 11D. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is CN_NUTS_C_HA2. 
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Figure 11E. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is ED_LITR_M_LIT. 
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Figure 11F. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is ED_LITR_W_LIT. 
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Figure 11G. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is FP_CUSM_W_MOD. 
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Figure 11H. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is ML_ITNA_P_ACC. 
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Figure 11I. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is RH_ANCN_W_N4P. 
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Figure 11J. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is RH_DELP_C_DHF 
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Figure 11K. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is WS_SRCE_P_IMP. 
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Figure 11L. Comparisons of County-level estimates as derived directly from DHS survey data 
versus from geostatistical model. Indicator shown here is WS_TLET_P_NFC. 
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Annex 2. Model-Based Geostatistical Framework for Generating 

Standardized Modeled Surfaces of DHS Indicators 

Full descriptions of the approach are included in SAR11 (Gething et al. 2015) and SAR 14 (Burgert et al. 
2016). In brief, a Bayesian model−based geostatistical (MBG) approach (Diggle and Ribeiro 2007; 
Diggle, Tawn, and Moyeed 1998) was used to generate modeled surfaces for each country-indicator. 
Building on techniques originally conceived for detailed mapping of malaria prevalence (Gething et al. 
2011; Hay et al. 2009), MBG models represent the observed variation in cluster−level survey data using 
four components. 

Sampling error, which can often be large given the small sample sizes in individual clusters, is 
represented using a standard sampling model, usually the binomial when the indicator in question is a 
proportion, as is most often the case for DHS indicators.  

Some non−sampling variation can often be explained using fixed effects, whereby a multivariate 
regression relationship is defined linking the indicator variable with a suite of geospatial covariates.  

Additional non−sampling errors not explained by the fixed effects are usually spatially auto-correlated, 
and this is represented using a random effects component. A spatial multi−variate normal distribution 
known as a Gaussian Process is employed, parameterized by a spatial covariance function.  

Any remaining variation not captured by these components is represented using a simple Gaussian noise 
term equivalent to that employed in a standard non−spatial linear model.  

Two types of data are input into the modeled surface process: 

1. DHS cluster level observations: Using the publicly available DHS data (individual and household 
recode files), the cluster level numerator and denominator for the indicator are created. This 
information is then linked to the cluster level GPS location data. 

2. Geospatial covariates: A range of covariate grids are included as possible explanatory covariates. 
An important aspect of geostatistical modeling is the exploitation of geospatial covariates that are 
correlated with the outcome of interest, and can partially explain variation in that response and 
allow for more accurate predictions across the map. A suite of covariates were chosen from 
existing libraries held at the University of Oxford, based on factors that have previously been 
shown to correlate with demographic and health indicators in different settings. The covariates 
are standardized to a 5x5km raster grid within a uniform coastline.  
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