Tanzania

Demographic and Health Survey 1991/1992

Bureau of Statistics
Planning Commission

DHS

Demographic and Health Surveys
Macro International Inc.

Tanzania Demographic and Health Survey 1991/1992

Sylvester Ngallaba
Saidi Hussein Kapiga
Ireneus Ruyobya
J. Ties Boerma

Bureau of Statistics
Planning Commission
Dar es Salaam, Tanzania
Macro International Inc.
Columbia, Maryland USA

This report summarises the findings of the 1991/1992 Tanzania Demographic and Health Survey (TDHS) conducted by the Bureau of Statistics, in collaboration with the Ministry of Health. Macro International Inc. provided technical assistance. Core funds for the TDHS were provided by the U.S. Agency for Intemational Development in Washington through the worldwide Demographic and Health Surveys programme. Additional funding was provided by USAID/Tanzania.

The TDHS is part of the worldwide Demographic and Health Surveys (DHS) programme, which is designed to collect data on fertility, family planning, and maternal and child health.

Additional information about the TDHS may be obtained from the Bureau of Statistics, P.O. Box 796, Dares Salaam (Telephone 051-22722/5; Fax 051-36364). Additional information about the DHS programme may be obtained by writing to: DHS, Macro International Inc., 8850 Stanford Boulevard, Suite 4000, Columbia, MD 21045, USA (Telephone 410-290-2800; Fax 410-290-2999).

CONTENTS

Page
TABLES vii
FIGURES xiii
ACRONYMS xV
PREFACE xvii
MAP OF TANZANIA xviii
CHAPTER 1 INTRODUCTION
1.1 Geography, History, and Economy 1
1.2 Population 2
1.3 Population and Family Planning Policies and Programmes 2
1.4 Health Priorities and Programmes 3
1.5 Objectives and Organisation of the Survey 4
1.6 Fieldwork 4
CHAPTER 2 CHARACTERISTICS OF HOUSEHOLDS AND RESPONDENTS
2.1 Characteristics of the Household Population 7
2.2 Housing Characteristics 14
2.3 Background Characteristics of Survey Respondents 17
CHAPTER 3 FERTILITY
3.1 Current Fertility 21
3.2 Children Ever Born and Living 25
3.3 Birth Intervals 26
3.4 Age at First Birth 28
3.5 Teenage Pregnancy and Motherhood 29
CHAPTER 4 FERTILITY REGULATION
4.1 Knowledge of Contraception 31
4.2 Ever Use of Contraception 34
4.3 Current Use of Contraceptives 35
4.4 Number of Children at First Use of Contraception 38
4.5 Knowledge of Fertile Period 39
4.6 Sources of Family Planning Methods 40
4.7 Intention to Use Family Planning Among Nonusers 43
4.8 Approval of Family Planning 46

CHAPTER 5 PROXIMATE DETERMINANTS OF FERTILITY

5.1 Marital Status 51
5.2 Polygamy 52
5.3 Age at First Marriage 54
5.4 Age at First Intercourse 56
5.5 Recent Sexual Activity 56
5.6 Postpartum Amenorthoea, Abstinence, and Insusceptibility 59
5.7 Termination of Exposure to Pregnancy 60
CHAPTER 6 FERTILITY PREFERENCES
6.1 Desire for More Children 63
6.2 Demand for Family Planning Services 65
6.3 Ideal and Actual Number of Children 67
6.4 Fertility Planning 69
CHAPTER 7 INFANT AND CHILD MORTALITY
7.1 Infant and Child Mortality 71
7.2 High-Risk Fertility Behaviour 76
CHAPTER 8 MATERNAL AND CHILD HEALTH
8.1 Antenatal Care and Delivery Assistance 79
8.2 Vaccinations 86
8.3 Acute Respiratory Infection 92
8.4 Fever 93
8.5 Diarrhoea 94
CHAPTER 9 INFANT FEEDING AND CHILDHOOD NUTRITION
9.1 Breastfeeding and Supplementation 99
9.2 Birth Weight 104
9.3 Child Nutritional Status 106
9.4 Mother's Nutritional Status 111
CHAPTER 10 RESULTS OF THE MALE SURVEY
10.1 Background Characteristics of Male Survey Respondents 113
10.2 Fertility Regulation 117
10.3 Nuptiality and Sexual Intercourse 130
10.4 Fertility Preferences 138
10.5 Couples 142
10.6 Desire for More Children 145
CHAPTER 11 AIDS KNOWLEDGE AND SEXUAL PRACTICES
11.1 AIDS Awareness and Knowledge 147
11.2 AIDS Misconceptions 149
11.3 Sources of Information about AIDS 150
11.4 Attitudes about AIDS 152
11.5 Sexual Practices 154
CHAPTER 12 LOCAL AVAILABILITY OF FAMILY PLANNING AND HEALTH SERVICES
12.1 Services Availability Questionnaire 161
12.2 Availability of Family Planning Services 162
12.3 Availability of Matemal and Child Health Services 164
REFERENCES 171
APPENDIX A PERSONS INVOLVED IN THE TANZANIA DEMOGRAPHIC AND HEALTH SURVEY 175
APPENDIX B SURVEY DESIGN 179
APPENDIX C ESTIMATES OF SAMPLING ERRORS 191
APPENDIX D DATA QUALITY TABLES 209
APPENDIX E QUESTIONNAIRES 215

TABLES

Page
Table 1.1 Demographic indicators 2
Table 1.2 Result of the household and individual interviews 5
Table 2.1 Household population by age, residence and sex 7
Table 2.2 Population by age from selected sources 8
Table 2.3 Household composition 9
Table 2.4.1 Educational level of the female household population 11
Table 2.4.2 Educational level of the male household population 12
Table 2.5 School enrolment 13
Table 2.6 Housing characteristics 15
Table 2.7 Household durable goods 16
Table $2.8 \quad$ Background characteristics of respondents 17
Table 2.9 Level of education 19
Table 2.10 Access to mass media 20
Table 3.1 Current fertility 21
Table 3.2 Fertility by background characteristics 23
Table 3.3 Age-specific fertility rates 24
Table 3.4 Fertility by marital duration 24
Table 3.5 Children ever born and living 25
Table 3.6 Birth intervals 27
Table 3.7 Age at first birth 28
Table 3.8 Median age at first birth 29
Table 3.9 Teenage pregnancy and motherhood 30
Table 3.10 Children born to teenagers 30
Table 4.1 Knowledge of contraceptive methods and source for methods 31
Table 4.2 Knowledge of modern contraceptive methods and source for methods 33
Table 4.3 Ever use of contraception 34
Table 4.4 Current use of contraception by age 35
Table 4.5 Current use of contraception by background characteristics 36
Table 4.6 Number of children at first use of contraception 39
Table 4.7 Knowledge of fertile period 40
Table 4.8 Source of supply for modern contraceptive methods 41

Page

Table 4.9 Time to source of supply for modern contraceptive methods 42
Table 4.10 Future use of contraception 44
Table 4.11 Reasons for not using contraception 45
Table 4.12 Preferred method of contraception for future use 45
Table 4.13 Family planning messages on radio and television 46
Table 4.14 Acceptability of the use of mass media for disseminating family planning messages 47
Table 4.15 Discussion of family planning by couples 48
Table 4.16 Attitudes of couples toward family planning 49
Table 5.1 Current marital status by age 51
Table 5.2 Polygyny 52
Table 5.3 Number of co-wives 53
Table 5.4 Age at first marriage 54
Table 5.5 Median age at first marriage 55
Table 5.6 Age at first sexual intercourse 56
Table 5.7 Median age at first intercourse 57
Table 5.8 Recent sexual activity 58
Table 5.9 Postpartum amenorrhoea, abstinence and insusceptibility 59
Table 5.10 Postpartum amenorrhoea, abstinence and insusceptibility by background characteristics 60
Table 5.11 Termination of exposure to the risk of pregnancy 61
Table 6.1 Fertility preference by number of living children 63
Table 6.2 Fertility preferences by age 64
Table 6.3 Desire to limit childbearing 65
Table 6.4 Need for family planning services 66
Table 6.5 Ideal number of children 67
Table 6.6 Mean ideal number of children by background characteristics 68
Table 6.7 Fertility planning status 69
Table 6.8 Wanted fertility rates 70
Table 7.1 Infant and child mortality 71
Table 7.2 Infant and child mortality by background characteristics 73
Table 7.3 Infant and child mortality by demographic characteristics 76
Table 7.4 High-risk fertility behaviour 77
Page
Table 8.1 Antenatal care 80
Table 8.2 Tetanus toxoid vaccination 82
Table 8.3 Place of delivery 84
Table 8.4 Assistance during delivery 85
Table 8.5 Vaccinations by source of information 87
Table 8.6 Vaccinations in the first year of life 89
Table 8.7 Vaccinations by background characteristics 91
Table 8.8 Prevalence and treatment of acute respiratory infection 92
Table 8.9 Prevalence and treatment of fever 93
Table 8.10 Prevalence of diamthoea 94
Table 8.11 Knowledge and use of ORS packets 95
Table 8.12 Treatment of diarrhoea 96
Table 8.13 Feeding practises during diarrhoea 97
Table 9.1 Initial breastfeeding 100
Table 9.2 Breastfeeding status 101
Table 9.3 Breastfeeding and supplementation by age 102
Table 9.4 Median duration and frequency of breastfeeding 103
Table 9.5 Feeding patterns for children under 5 104
Table 9.6 Birth weight data 105
Table 9.7 Mean birth weight and incidence of low birth weight 106
Table 9.8 Nutritional status by demographic characteristics 108
Table 9.9 Nutritional status by socioeconomic characteristics 109
Table 9.10 Anthropometric indicators of matemal nutritional status 111
Table 9.11 Differentials in matemal anthropometric indicators 112
Table 10.1 Background characteristics of respondents 114
Table 10.2 Level of education 115
Table 10.3 Access to mass media 116
Table 10.4 Knowledge of contraceptive methods and source for methods 117
Table 10.5 Knowledge of modem contraceptive methods and source for methods 119
Table 10.6 Ever use of contraception 120
Table 10.7 Current use of contraception by age 121
Table 10.8 Current use of contraception by background characteristics 123
Page
Table 10.9 Source of supply for modem contraceptive methods 124
Table 10.10 Time to source of supply for modern contraceptive methods 125
Table 10.11 Future use of contraception 126
Table 10.12 Reasons for not using contraception 127
Table 10.13 Preferred method of contraception for future use 127
Table 10.14 Family planning messages on radio and television 128
Table 10.15 Acceptability of the use of mass media for disseminating family planning messages 129
Table 10.16 Attitudes of couples toward family planning 130
Table 10.17 Current marital status by age 131
Table 10.18 Polygyny 132
Table 10.19 Age at first marriage 133
Table 10.20 Median age at first marriage 134
Table 10.22 Age at first sexual intercourse 135
Table 10.23 Recent sexual activity 137
Table 10.24 Fertility preference by number of living children 138
Table 10.25 Fertility preferences by age 139
Table 10.26 Ideal number of children 141
Table 10.27 Background characteristics of husbands 142
Table 10.28 Age difference between spouses 143
Table 10.29 Knowledge of methods among married couples 143
Table 10.30 Attitudes of couples toward family planning 144
Table 10.31 Spouse's perception of other spouse's approval of family planning 145
Table 10.32 Desire for more children among couples by number of living children 145
Table 10.33 Ideal number of children according to spouses 146
Table 11.1 Knowledge of AIDS 148
Table 11.2 AIDS transmission 150
Table 11.3 Sources of AIDS information 151
Table 11.4 Government and personal action for AIDS patients 152
Table 11.5 Frequency of intercourse in the four weeks preceding the survey 155
Table 11.6 Usual frequency of intercourse 156
Table 11.7 Number of sexual partners in the four weeks preceding the survey 157
Table 11.8 Condom use 158

Page

Table 11.9 Men's perceptions about condoms 159
Table 12.1 Distance to nearest family planning services according to residence 162
Table 12.2 Distance to nearest family planning services according to type of facility and residence 163
Table 12.3 Time to nearest family planning services according to type of facility and residence 164
Table 12.4 Distance to nearest antenatal care services according to residence 165
Table 12.5 Distance to nearest antenatal care services according to type of facility 165
Table 12.6 Time to nearest antenatal care services according to type of facility 166
Table 12.7 Time to nearest delivery care services according to type of residence 166
Table 12.8 Distance to nearest facility providing delivery care services according to type of facility 167
Table 12.9 Time to nearest facility providing delivery assistance according to type of facility 167
Table 12.10 Distance to nearest immunisation services according to residence 168
Table 12.11 Time to nearest immunisation services 169
Table B. 1 Results of the household and individual interviews by residence and zone 184
Table B. 2 Sample implementation for women according to residence and zone 185
Table B. 3 Sample implementation for women according to region 186
Table B. 4 Sample implementation for men according to residence and zone 187
Table B. 5 Sample implementation for men according to region 188
Table C. 1 List of selected variables for sampling errors 193
Table C. 2 Sampling errors, entire sample 194
Table C. 3 Sampling errors, urban 195
Table C. 4 Sampling errors, rural 196
Table C. 5 Sampling errors, Mainland 197
Table C. 6 Sampling errors, Dar es Salaam 198
Table C. 7 Sampling errors, other urban 199
Table C. 8 Sampling errors, Rural (Mainland) 200
Table C. 9 Sampling errors, Zanzibar 201
Table C. 10 Sampling errors, Coast 202
Table C. 11 Sampling errors, North Highlands 203
Table C. 12 Sampling errors, Lake 204
Table C. 13 Sampling errors, Central 205
Table C. 14 Sampling errors, Southem HighlandsTable C. 15 Sampling errors, South207
Table D. 1 Household age distribution 209
Table D. 2 Age distribution of eligible and interviewed women 210
Table D. 3 Completeness of reporting 211
Table D. 4 Births by calendar year since birth 212
Table D. 5 Reporting of age at death in days 213
Table D. 6 Reporting of age at death in months 214

FIGURES

Page
Figure 2.1 Population pyramid of Tanzania 8
Figure 2.2 Level of education for men and women 13
Figure 2.3 School enrolment by age and place of residence 14
Figure 3.1 Age-specific fertility rates 22
Figure 3.2 Total fertility rate by background characteristics 23
Figure 3.3 Children ever born to women 15-49 26
Figure 4.1 Current use of modem contraceptives 37
Figure 4.2 Use of modem contraceptive methods, married women 15-49 38
Figure 4.3 Distribution of current users by source of contraceptive supply 42
Figure 6.1 Fertility preferences among currently married women 15-49 64
Figure 7.1 Trends in mortality, infants and children under five 72
Figure 7.2 Infant mortality in the ten years preceding the survey by selected characteristics 74
Figure 7.3 Child mortality (1-4 years) in the ten years preceding the survey by selected characteristics 74
Figure 8.1 Number of antenatal care visits and timing of first visit 81
Figure 8.2 Vaccination coverage among children age 12-23 months 87
Figure 8.3 Vaccination coverage among children 12-23 months 88
Figure 8.4 Percentage of children who received DPT1, DPT3, and measles vaccine by 12 months of age 90
Figure 8.5 Percentage of children age 1-59 months who received treatment for diarrhoea in the two weeks preceding the survey by type of treatment 97
Figure 9.1 Nutritional status of children under five years, mean Z-scores by age in months 107
Figure 9.2 Percentage of children under five years who are underweight by region 110
Figure 10.1 Contraceptive knowledge among currently married men and women 118
Figure 10.2 Current use of contraceptives among currently married men and women 122
Figure 10.3 Percentage of men and of women who have ever had sexual intercourse by exact age 136
Figure 10.4 Fertility preferences among currently married men 15-60 139
Figure 10.5 Percent of currently married men who want no more children 140
Figure 10.6 Mean ideal number of children among all men 141
Page
Figure 10.7 Spouses responses on approval of family planning 144
Figure 11.1 AIDS awareness and knowledge of modes of transmission 149
Figure 11.2 Sources of information about AIDS 152

ACRONYMS

ARI	Acute Respiratory Infections
BCG	Bacillus Calmette-Guerin (vaccine)
BMI	Body Mass Index
CBR	Crude Birth Rate
CCM	Chama Cha Mapinduzi (political party)
CDC	Centers for Disease Control
CDD	Control of Diarrhoeal Diseases
DHS	Demographic and Health Surveys
DPT	Diphtheria - Poliomy yelitis - Tetanus (vaccine)
EA	Enumeration Area
EPI	Expanded Programme of Immunization
GDP	Gross Domestic Product
IEC	Information, Education, and Communication
ISSA	Integrated System for Survey Analysis
IUD	Intra-Uterine Device
MCH/FP	Maternal and Child Health/Family Planning
NACP	National AIDS Control Programme
NCHS	National Center for Health Statistics
NFPP	National Family Planning Programme
ORS	Oral Rehydration Salts
ORT	Oral Rehydration Therapy
PHC	Primary Health Care
SD	Standard Deviation
TBA	Traditional Birth Attendant
TDHS	Tanzania Demographic and Health Survey
TFR	Total Fertility Rate
UN	United Nations
UMATI	Family Planning Association of Tanzania
UNFPA	United Nations Population Fund
UNICEF	United Nations Children's Fund
USAID	United States Agency for International Development
WHO	World Health Organisation

PREFACE

The Tanzania Demographic and Health Survey (TDHS) involved all areas of the country and was a truly representative survey that aimed at collecting data on fertility, mortality, family planning, and health of the Tanzanians.

The survey is part of a worldwide undertaking that aims at assessing the changing demographic and health situation in many developing countries. This effort has, for some time, been coordinated and continues to be coordinated by the Demographic and Health Surveys programme of Macro International Inc., of Columbia, Maryland, USA. A decision to join the programme was made sometime in mid-1990; preparations began in July 1990, and the survey was executed between October 1991 and March 1992. The data processing arrangement, particularly the use of the ISSA (Integrated System for Survey Analysis) package, was done simultaneously with the fieldwork, and the tabulations were done a few months after the fieldwork was completed.

Tanzania has a long history of census taking which dates as far back as 1910 when the first count was taken. However, the first modern census was not taken until 1948 under the East African Commission; subsequent censuses were undertaken in 1957, 1967, 1978, and 1988. During the period between 1948 and 1988 only one demographic survey was carried out at a national level, in 1973 (the National Demographic Survey). Vital registration, which is a very important source of fertility and mortality information, is more or less nonexistent, though efforts are now being made to expand and improve the system to cover the whole country instead of just a small section of the urban population. Given this background, the Tanzania Demographic and Health Survey represents yet another milestone in an effort to collect high-quality data on the demographic situation, family planning, and health.

The successful completion of the TDHS and publication of this volume is due to the contributions of many people. First, I wish to thank the National Family Planning Project staff for their decision to assign the work to the Bureau of Statistics and provide the field interviewers. To the nurses who worked tirelessly throughout the survey period, I acknowledge with gratitude their valuable contributions to the survey. They endured many logistical and technical difficulties while in the field. Likewise, I would also like to extend my sincere appreciation to the Tanzania Food and Nutrition Centre for their valuable assistance in rendering free training services during the training of the interviewers. The great efforts that were made by the Census Office staff in supervising and running the survey are highly commended.

At this juncture, I wish to acknowledge here the immeasurable contributions of the following international agencies who participated in one way or another in the operation of the survey. The U.S. Agency for International Development facilitated the work by providing funds for the entire project. The Demographic and Health Surveys division of Macro International Inc. of Columbia, Maryland, initiated the idea of the survey and provided the needed technical as well as material and moral support during the entire period of the survey. Special acknowledgement is due to Ms. Anne Cross for her efforts in convincing the Government of Tanzania to conduct this survey, to Ms. Naomi Rutenberg who acted as the country coordinator, to Ties Boerma who worked tirelessly to put the survey in its present final form, and to all the staff who participated in some way in bringing this work to its successful conclusion. My sincere appreciation is also extended to the UN agencies, UNFPA and UNICEF, which played a very vital role in providing advice, particularly in determining the items to be included in the survey.

Last but not least, I wish to convey my sincere thanks to the Party and Government officials at the national, regional, district, ward, and village levels for their vital role in ensuring the smooth and successful completion of the survey fieldwork. The publication of this report is clear evidence of their contributions to the survey.
N.K. Mbalilaki

GOVERNMENT STATISTICIAN

TANZANIA

CHAPTER 1

INTRODUCTION

1.1 History, Geography, and Economy

Geography

The United Republic of Tanzania is the largest country in East Africa, covering 940,000 square kilometers, 60,000 of which is inland water. Tanzania lies south of the Equator and shares borders with eight countries: Kenya and Uganda to the north; Rwanda, Burundi, Zaire, and Zambia to the west; and Malawi and Mozambique to the South.

Tanzania has an abundance of inland water with several large lakes and rivers. Lake Tanganyika runs along the westem border and is Africa's deepest and longest freshwater lake, and the world's second deepest lake. Lake Victoria is the world's second largest lake and drains into the Nile river. The Rufiji is Tanzania's largest river and drains into the Indian Ocean south of Dar es Salaam. Of all the rivers in Tanzania, only the Rufiji and the Kagera are navigable by anything larger than a canoe.

One of Tanzania's most distinctive geological features is the Great Rift Valley, which was caused by faulting throughout eastern Africa and is associated with volcanic activity in the North-Eastem regions of the country. Two branches of the Rift Valley run through Tanzania. The western branch holds Lakes Tanganyika, Rukwa, and Nyasa; the eastern branch ends in northern Tanzania and includes Lakes Natron, Manyara, and Eyasi.

Except for a narrow belt of 900 square kilometres along the coast, most of Tanzania lies above 200 metres in altitude, and much of the country is higher than 1000 metres above sea level. In the north, Mount Kilimanjaro rises to over 5000 metres with the highest peak, Kibo, reaching 5,895 metres. This is the highest point in Africa. Tanzania has a diversity of landscape.

The main climatic feature for most of the country is the long dry spell from May to October, followed by a period of rainfall during November/December. The main rainy season along the coast and the areas around Mt. Kilimanjaro is from March to May, with short rains between October and December. In the western part of the country, around lake Victoria, rainfall is well distributed throughout the year, with the peak between March and May.

Administratively, Tanzania mainland is divided into 20 regions, and Zanzibar into five. The regions are subdivided into districts.

History

Tanganyika became an independent nation from British rule on December 9th, 1961. One year later, on December 9th, 1962, it became a republic, severing all links with the British crown except for its membership in the Commonwealth. Zanzibar became independent on January 12th, 1964, after the overthrow of the rule of the Sultanate. On April 26th, 1964, Tanganyika and Zanzibar joined to form the United Republic of Tanzania.

Economy

Tanzania has a mixed economy in which agriculture plays a key role. Agriculture, which comprises crop, animal husbandry, forestry, fishery, and hunting subsectors, contributes the largest share of any sector to the Gross Domestic Product (GDP).

The GDP increased by 3.8 percent in 1991 compared to 3.6 percent in 1990 and 3.3 percent in 1989. Economic growth in the last 5 years follows the implementation of structural adjustment policies over the last $7-8$ years.

The economic growth rate attained in 1991 is higher than the annual population growth rate of 2.8 percent. However, as in the previous years, it is lower than the targeted growth rates of 4.5 and 5.0 percent as envisioned in the Second Economic Recovery Programme and the Second Five-Year Development Plan, respectively.

1.2 Population

The 1967 Tanzania census reported a total population of 12.3 million. According to the 1988 census the population had increased to 23.1 million (see Table 1.1). Tanzania is still sparsely populated, though the population density is high in some parts of the country and has been increasing over time. In 1967, the average population density was 14 persons per square kilometer, by 1988 it had increased to 26 persons per square kilometer.

Although the population is still predominantly rural, the proportion of urban residents has been increasing steadily, increasing from 6 percent in 1967 to 18 percent in 1988. Life expectancy rose from 41 years in 1967 to 48 years in 1988. The intercensal growth rate between 1978 and 1988 was 2.8 percent,

	Census		
Indicator	1967	1978	1988
Population (millions)	12.3	17.5	23.1
Density (pop./sq.km)	14	20	26
Percent urban	6.39	13.78	18.33
Crude birth rate	47	49	46
Crude death rate	24.4	19.0	15.0
Total fertility rate	6.6	6.9	6.5
Infant mortality rate (per 1000)	155	137	115
Life expectancy at birth	41	44	48

Source: Bureau of Statistics, 1967; 1978; 1988 compared to 3.2 percent between 1967 and 1978.

1.3 Population and Family Planning Policies and Programmes

Population Policy

The population of Tanzania has trebled from 7.7 million in 1948 to 23.1 million in 1988. At this rate of growth, it is estimated that by the year 2000 the population will be about 33 million. However, the national economy did not grow significantly in the last decade due to various constraints, and the resources available per head declined by between 7.5-10 percent during 1980-1985 and increased by 1.0 percent per annum between 1985 and 1991. As in other countries in sub-Saharan Africa, rapid population growth has been associated with poor economic performance. The consequences of rapid population growth are felt acutely and visibly in the public budgets for health, education, and related fields of human resource development. It is obvious that expansion of and improvements in the quality of these services is unlikely to happen without first controlling the rapid population growth.

It is against this background that Tanzania formulated the 1992 National Population Policy. The major objective of this policy is to reinforce national development by developing available resources in order to improve the quality of life of the people. The main emphasis is regulation of population growth and improvement of the health and welfare of women and children.

With specific reference to family planning, the goals of the policy are to lower the annual population growth rate through a reduction in the numbers of births and an increase in voluntary fertility regulation. Other specific objectives related to population regulation include making family planning services available to all who want them, encouraging every family to space births at least two years apart, and supporting family life education programmes for youth and family planning for men as well as women.

Family Planning

The Family Planning Association of Tanzania (UMATI) introduced family planning services to Tanzania in 1959. During the early years most services were concentrated in the urban areas. With the expansion of UMATI in the early seventies, services were extended to cover all regions in the country. The government became actively involved in service provision in 1974 following the launching of the integrated Maternal and Child Health (MCH) programme. Although family planning services were provided as part of the integrated programme, contraceptive use continued to be low in the country. In 1984, the govemment started a National Childspacing Programme with support from the United Nations Population Fund (UNFPA). Evaluation of the National Childspacing Programme in 1987 indicated only a slight increase in contraceptive prevalence and identified lack of trained service providers and poor logistic support as the major constraints to expansion of services.

The findings and recommendations from this evaluation were used to plan a five-year National Family Planning Programme (NFFP). The implementation of this programme began in 1989 with the broad objective of raising the contraceptive acceptance rate from about 7 to 25 percent by 1993. Other specific objectives of the programme are to:

- Improve the quality of family planning services through training of service providers, improvement of supervision, and upgrading of the logistic system,
- Improve accessibility of family planning services by increasing the proportion of health units providing family planning services,
- Improve general health of mothers and children, and
- Raise awareness and demand for family planning services.

1.4 Health Priorities and Programmes

The government of Tanzania emphasises equity in the distribution of health services and views access to services as a basic human right. In response to the worldwide efforts to attain the social goal of "Health for All" by the year 2000, Tanzania's health strategy focuses on the delivery of primary health care services. In 1991 a new primary health care (PHC) strategy was developed by the Ministry of Health. As the primary objectives, the PHC strategy focuses on strengthening district management capacity, multisectoral collaboration, and community involvement. At the central, regional, and district level, PHC steering committees have been established.

About 60 percent of health services are provided by the govemment and the remainder are provided by nongovernmental organisations. Tanzania has an extensive network of health facilities. At the national level there are four major referral hospitals, one of which is the university teaching hospital. Most regions have a regional hospital and there are a total of 152 hospitals in 106 districts. At the divisional level there
are about 273 rural health centres and at the ward level there are about 3000 dispensaries. At the village level there are village health posts staffed by two village health workers. It is estimated that there are currently around 5550 village health workers in the country.

1.5 Objectives and Organisation of the Survey

The Tanzania Demographic and Health Survey (TDHS) is a national sample survey of women of reproductive ages (15-49) and men aged 15 to 60 . The survey was designed to collect data on socioeconomic characteristics, marriage patterns, birth history, breastfeeding, use of contraception, immunisation of children, accessibility to health and family planning services, treatment of children during times of illness, and the nutritional status of children and their mothers.

The TDHS is part of a worldwide programme that is being funded by the United States Agency for Intemational Development (USAID). The primary objectives of the TDHS were to:

- Collect data for the evaluation of family planning and health programmes,
- Determine the contraceptive prevalence rate, which will help in the design of future national family planning programmes, and
- Assess the demographic situation of the country.

The TDHS involved various institutions and individuals. The Bureau of Statistics had the responsibility of running the project and the Ministry of Health provided technical advice and logistical support. Local UNFPA and UNICEF offices provided advisory and logistic support.

Financial support was provided by USAID and administered by Macro International. The funds were used to meet expenses related to salaries, allowances for survey personnel, data processing, anthropometric equipment, printing of questionnaires, maintenance of vehicles, fuel, and publication of reports. The Bureau of Statistics provided ten vehicles for the fieldwork and its supervision.

The entire work was under the supervision of the survey director who was closely assisted by survey statisticians and the field teams. The supervisors were recruited from both the Bureau of Statistics and the Planning Commission. The Ministry of Health provided male and female nurses who worked as field interviewers. The Census Office prepared the sample frame in conjunction with a sampling expert from Macro International. The questionnaire design and translation (into Kiswahili), the pretest, and the training for the main survey were carried out by the survey statisticians.

1.6 Fieldwork

The TDHS field staff consisted of eight teams, each composed of six female interviewers and one male interviewer, a field editor, a supervisor and a driver. Interviewers were recruited from the Ministry of Health and all of them were trained nurses. The fieldwork was conducted during the rainy season (between October 1991 and March 1992). The persons involved in the survey are listed in Appendix A, and a detailed account of the fieldwork is presented in Appendix B.

Table 1.2 shows the results of the household and individual interviews. Out of the 9282 households selected for interview, 8561 households could be located and 8327 were actually interviewed. The shorfall between selected and interviewed households was largely due to the fact that many dwellings were either vacant or destroyed or no competent respondents were present at the time of the interview. A total of 9647 eligible women (i.e., women age 15-49 who spent the night before the interview in a sampled household)
were identified for intervicw, and 9238 women were actually interviewed (96 percent response rate). The main reason for non-interview was absence from the home or incapacitation.

The TDHS male survey covered men aged between 15 and 60 years who were living in selected households (every fourth household of the female survey). The results of the survey show that 2392 eligible men were identified and 2114 men were interviewed (88 percent response rate). Men were generally not interviewed because they were either incapacitated or not at home during the time of the survey.

Table 1.2 Results of the household and individual	
interviews	
Number of households, number of interviews, and response rates, Tanzania $1991 / 92$	
Result	Total
Houschold interviews	
Households sampled	
Households found	
Households interviewed	9282
Household response rate	8561
Individual intervlews	97.3
Number of eligible women Number of eligible women interviewed	9647
Eligible women response rate	958
Number of eligible men	2392
Number of eligible men interviewed	2114
Eligible men response rate	88.3

CHAPTER 2

CHARACTERISTICS OF HOUSEHOLDS AND RESPONDENTS

Information on the background characteristics of the households interviewed in the survey and the individual survey respondents is essential for the interpretation of survey findings, and provides a rough measure of the representativeness of the survey. This chapter presents this information in three sections:

- Characteristics of the household population,
- Housing characteristics, and
- Background characteristics of survey respondents.

2.1 Characteristics of the Household Population

The TDHS collected information on all usual residents and visitors who spent the previous night in the household. A household was defined as a person or a group of persons living together and sharing a common source of food.

Age

The age distribution of the household population in the TDHS is shown in Table 2.1 and Figure 2.1 by five-year age groups. This distribution conforms to the pattern typical of high-fertility populations, i.e., a much higher proportion of the population is in the younger age groups than in the older age groups.

Table 2.1 Houschold population by age, residence, and sex
Percent distribution of the de facto household population by five-year age group, according to urban-rural residence and sex, Tanzania 1991/92

Age group	Urban			Rural			Total		
	Male	Female	Total	Male	Female	Total	Male	Fernale	Total
0-4	17.0	14.6	15.8	18.6	17.6	18.1	18.2	16.9	17.6
5-9	13.4	14.0	13.7	16.2	15.0	15.6	15.6	14.8	15.2
10-14	13.8	12.0	12.9	14.8	13.9	14.3	14.5	13.5	14.0
15.19	12.6	13.0	12.8	10.8	9.6	10.2	11.2	10.3	10.8
20-24	8.1	10.8	9.4	6.5	8.2	7.4	6.8	8.7	7.8
25-29	7.0	9.0	8.0	5.6	7.0	6.3	5.9	7.4	6.7
30-34	5.7	6.5	6.1	5.0	5.1	5.1	5.2	5.4	5.3
35-39	4.1	4.5	4.3	3.9	4.5	4.2	3.9	4.5	4.2
40-44	4.2	2.9	3.6	3.3	3.4	3.3	3.5	3.3	3.4
45-49	4.1	3.1	3.6	2.8	3.2	3.0	3.1	3.2	3.1
50-54	3.1	3.4	3.3	2.5	3.7	3.1	2.6	3.7	3.2
55-59	2.3	1.7	2.0	2.5	2.9	2.7	2.5	2.7	2.6
60-64	2.3	1.9	2.1	2.2	2.1	2.2	2.2	2.1	2.1
65-69	0.9	1.0	1.0	1.9	1.6	1.7	1.7	1.4	1.6
70-74	0.5	0.7	0.6	1.5	0.9	1.2	1.3	0.9	1.1
75-79	0.3	0.4	0.4	0.7	0.6	0.6	0.6	0.5	0.6
$80+$	0.3	0.4	0.4	1.0	0.6	0.8	0.8	0.6	0.7
Missing/Don't know	0.2	0.0	0.1	0.2	0.1	0.1	0.2	0.1	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	4732	4717	9449	16439	17540	33978	21170	22257	43427

Figure 2.1
Population Pyramid of Tanzania

Table 2.2 shows that the population age structure found in the TDHS is very similar to that in the 1967, 1978, and 1988 population censuses. Dependency ratios are also shown. The age dependency ratio is the ratio of the number of persons age 0 to 14 and 65 and over divided by the number of persons age 15 to 64 . It is an indicator of the dependency responsibility of adults in their productive years.

The dependency ratios in Tanzania are typical of those found in other African countries. With approximately 47 percent of the population below age 15 and approximately 4 percent above 64 , there is roughly one dependent person for each adult in the population. However, old age dependency is minimal compared to child dependency.

Household Composition

Table 2.3 presents the percent distribution of households by sex of head of household, size, and relationship structure and indicates whether the household includes fostered children, according to urban/rural residence. According to the TDHS data, the large majority of households in Tanzania are headed by males (81 percent), which is somewhat higher than the 1988 census figure (70 percent; Bureau of Statistics, 1992).

Table 2.3 Household composition
Percent distribution of households by sex of head of household, household size, relationship structure, and presence of foster children, according to urban-rural residence and region, Tanzania 1991/92

Characteristic	Mainland				Zanzibar	Total
	Total	Dar es Salaam	Other urban	Rural		
Household headship						
Male	75.5	82.9	81.5	83.0	77.6	81.4
Female	24.5	17.1	18.5	17.0	22.4	18.6
Number of usual members						
1	13.0	7.2	9.0	18.9	9.0	9.0
2	12.9	9.6	10.4	13.1	11.7	10.5
3	14.4	12.2	12.6	12.2	15.1	12.7
4	12.0	14.5	14.0	13.4	12.4	13.9
5	12.2	13.2	13.0	11.9	15.8	13.1
6	7.1	11.9	10.8	9.0	12.5	10.9
7	8.3	10.9	10.0	5.2	8.7	10.0
8	7.5	6.6	6.8	6.4	6.2	6.7
9+	12.7	13.9	13.4	9.8	8.7	13.2
Mean size	4.9	5.5	5.3	4.4	4.8	5.3
Relationship structure						
One adult	19.2	12.4	14.3	22.6	18.0	14.5
Two related adults:						
Of opposite sex	28.6	37.7	35.5	29.3	41.5	35.7
Of same sex	8.3	3.4	4.6	7.5	4.3	4.6
Three or more related aduls	39.5	43.8	42.5	36.2	32.7	42.2
Other	4.0	2.6	3.0	4.4	3.5	3.0
Foster children ${ }^{1}$	23.3	23.2	22.8	16.7	31.5	23.1

Note: Table is based on de jure members, i.e., usual residents.
${ }^{1}$ Foster children are those under age 15 living in households with neither their mother nor their father present.

The average household size for the country is 5.3 persons per household. Rural households are generally larger than urban households (5.5 versus 4.4 for Dar es Salaam and 4.9 for other urban areas). The proportion of single-person households was relatively higher in Dar es Salaam and other urban areas than in the rural areas.

About 23 percent of households include one or more children under age 15 who have neither their natural mother nor father living with them (i.e., foster children). The highest proportion of households with foster children (32 percent) is found in Zanzibar and the lowest (17 percent) in rural areas.

Education

In the three decades since independence, the education sector has expanded to reach most parts of the country and phenomenal growth has been recorded in both student enrolment and the number of new institutions. In 1970 a nationwide mass literacy program was launched and in 1975 a national policy of Universal Primary Education was adopted which gave every child the right to free primary education. Primary education, which includes seven years of schooling, was made compulsory for all children 7 to 14 years of age in 1978. There are six years of secondary education. Entry into the fifth year of secondary education (Form V) is based on open competitive examination results. In Zanzibar, although education also incorporates two stages, it differs slightly from the mainland system. Primary education is entered at age 6-8 years and takes 8 years to complete. It is followed by two three-year cycles of secondary school.

In the TDHS, information on educational attainment was collected for every member of the household. Tables 2.4.1 and 2.4.2 show the percent distribution of the de facto male and female household population age 5 and over, respectively, by highest level of education attended according to age, residence, and region. It appears that 37 percent of males and 48 percent of females have never been to school (see also Figure 2.2). Fifty-eight percent of males and 49 percent of females have attended only primary school, and 4 percent of males and 2 percent of females have attended secondary school. A very small proportion of males and females (less than 1 percent) have received higher education. The levels of education by age show a pronounced increase in levels of education during the past decades. Progress in eradicating illiteracy in Tanzania would probably be even greater if nonformal education programmes (adult literacy programmes) were taken into account.

The proportion of both males and females with no education is highest in Zanzibar, followed by rural areas. However, Zanzibar also has the highest proportion of people with completed primary education. At the regional level, Kilimanjaro has the lowest proportion of people with no education and the highest percentage with primary education.

Table 2.4.1 Educational level of the female household population
Percent distribution of the de facto female household populations age five and over by highest level of education attended, according to selected background characteristics, Tanzania 1991/92

Background characteristic	No education	Primary incomplete	Completed primary	Some secondary/ Higher	Don't know/ Missing	Tola	Number of persons	Median number of years
Age								
5-9	83.2	16.5	0.0	0.0	0.3	100.0	3300	0.0
10-14	22.3	77.5	0.2	0.0	0.0	100.0	3013	3.2
15-19	14.8	78.9	6.3	0.0	0.0	100.0	2297	7.2
20-24	16.4	75.9	7.6	0.0	0.1	100.0	1939	7.3
25-29	28.1	67.6	3.4	0.6	0.2	100.0	1653	7.1
30-34	43.7	51.3	4.0	0.7	0.3	100.0	1206	3.5
35-39	55.9	41.7	2.1	0.2	0.1	100.0	1012	0.0
40-44	60.4	38.0	1.3	0.2	0.0	100.0	727	0.0
45-49	73.1	26.2	0.2	0.0	0.6	100.0	701	0.0
50-54	82.7	15.9	0.2	0.0	1.2	100.0	818	0.0
55-59	85.7	13.5	0.1	0.0	0.7	100.0	591	0.0
60-64	91.2	8.5	0.0	0.0	0.3	100.0	458	0.0
65+	91.4	7.7	0.0	0.0	0.9	100.0	760	0.0
Missing/Don't know	73.8	0.0	0.0	0.0	26.2	100.0	12	0.0
Residence								
Mainland	47.9	49.7	2.0	0.1	0.3	100.0	17937	1.4
Dar es Salaam	32.2	60.8	6.5	0.2	0.3	100.0	965	5.4
Ohher urban	35.9	57.8	5.7	0.5	0.2	100.0	3022	4.2
Rural	51.6	47.1	0.9	0.1	0.3	100.0	13949	0.0
Zanzibar	53.9	33.0	13.1	0.0	0.0	100.0	550	0.0
Region								
Dodoma	49.6	49.2	1.1	0.0	0.1	100.0	1271	1.0
Arusha	43.4	48.1	6.0	1.0	1.5	100.0	1090	2.4
Kilimanjaro	26.0	68.2	5.5	0.2	0.0	100.0	1053	4.8
Tanga	41.2	57.2	1.2	0.0	0.4	100.0	987	2.6
Morogoro	50.5	48.2	1.2	0.1	0.0	100.0	942	0.0
Coast	56.9	41.4	1.2	0.2	0.3	100.0	376	0.0
Lindi	55.4	43.4	0.2	0.6	0.4	100.0	515	0.0
Miwara	60.3	39.5	0.0	0.2	0.0	100.0	725	0.0
Ruvuma	36.3	62.6	0.7	0.2	0.2	100.0	688	3.5
Iringa	52.0	45.9	1.3	0.0	0.8	100.0	1067	0.0
Mbeya	45.8	53.5	0.5	0.0	0.2	100.0	914	1.9
Singida	48.0	49.3	2.5	0.0	0.2	100.0	715	1.5
Tabora	57.3	41.3	1.2	0.0	0.1	100.0	566	0.0
Rukwa	55.8	43.4	0.6	0.0	0.2	100.0	414	0.0
Kigoma	54.1	45.3	0.3	0.0	0.3	100.0	806	0.0
Shinyanga	59.5	39.1	1.3	0.0	0.1	100.0	1494	0.0
Kagera	49.1	47.3	3.3	0.0	0.2	100.0	1284	1.0
Mwanza	49.9	48.5	1.4	0.0	0.2	100.0	1238	1.0
Мага	46.8	52.6	0.4	0.0	0.2	100.0	829	1.7
Total	48.1	49.2	2.4	0.1	0.3	100.0	18487	1.4

Table 2.4.2 Educational level of the male household population
Percent distribution of the de facto male household populations age five and over by highest level of education attended, according to selected background characteristics, Tanzania 1991/92

Background characteristic	No education	Primary incomplete	Completed primary	Some secondaryl Higher	Don't know/ Missing	Total	Number of persons	Median number of years
Age								
5-9	87.0	12.8	0.0	0.0	0.2	100.0	3294	0.0
10-14	22.6	77.2	0.2	0.0	0.0	100.0	3077	2.8
15-19	11.1	83.1	5.7	0.0	0.1	100.0	2376	7.1
20-24	9.7	80.7	9.4	0.1	0.1	100.0	1449	7.4
25-29	9.8	83.0	6.8	0.3	0.1	100.0	1258	7.4
30-34	16.9	72.8	9.4	0.3	0.7	100.0	1094	7.3
35-39	27.7	62.6	8.0	1.4	0.3	100.0	827	5.7
40-44	29.3	63.8	6.2	0.5	0.2	100.0	746	4.6
45-49	35.8	57.2	5.4	1.1	0.5	100.0	660	4.2
50-54	41.3	50.9	7.0	0.7	0.2	100.0	556	3.9
55-59	50.7	43.0	4.7	0.1	1.6	100.0	525	0.0
60-64	60.0	37.1	1.5	0.2	1.2	100.0	472	0.0
65+	71.3	26.9	0.9	0.1	0.8	100.0	934	0.0
Missing/Don't know	45.7	34.9	1.6	0.0	17.7	100.0	44	0.9
Residence								
Mainland	37.0	58.8	3.6	0.2	0.3	100.0	16826	3.6
Dar es Salaam	21.8	65.4	11.9	0.6	0.2	100.0	1046	7.1
Other urban	29.9	62.6	7.0	0.4	0.2	100.0	2891	4.6
Rural	39.8	57.5	2.2	0.1	0.4	100.0	12889	3.0
Zanzibar	41.2	41.5	17.1	0.3	0.0	100.0	486	2.9
Region								
Dodoma	42.6	56.3	1.2	0.0	0.0	100.0	1200	2.4
Arusha	43.0	50.5	4.5	0.5	1.5	100.0	1060	2.9
Kilimanjaro	21.1	72.7	5.3	0.5	0.3	100.0	942	5.3
Tanga	30.5	66.3	3.1	0.0	0.0	100.0	872	4.1
Morogoro	35.8	61.1	3.1	0.0	0.0	100.0	872	3.5
Coast	45.2	52.0	2.1	0.1	0.6	100.0	343	2.1
Lindj	47.8	49.5	1.6	0.0	1.0	100.0	469	1.6
Mtwara	39.6	59.8	0.4	0.2	0.0	100.0	728	3.1
Ruvuma	29.0	68.1	2.1	0.7	0.2	100.0	575	4.5
Iringa	36.2	60.4	2.7	0.0	0.7	100.0	954	3.5
Мbeya	32.2	63.5	4.1	0.0	0.1	100.0	847	4.3
Singida	41.8	54.8	3.2	0.1	0.1	100.0	654	2.6
Tabora	41.6	56.0	2.4	0.0	0.1	100.0	560	2.7
Rukwa	42.1	55.2	2.4	0.1	0.2	100.0	438	2.4
Kigoma	44.0	54.1	1.6	0.3	0.0	100.0	690	2.4
Shinyanga	44.0	52.9	2.2	0.3	0.7	100.0	1442	2.4
Kagera	35.1	57.9	6.7	0.1	0.2	100.0	1211	3.7
Mwanza	39.4	56.8	3.4	0.2	0.3	100.0	1204	3.0
Mara	37.6	59.3	2.9	0.1	0.2	100.0	720	3.3
Total	37.1	58.4	4.0	0.2	0.3	100.0	17312	3.6

Figure 2.2
Level of Education for Men and Women

Table 2.5 and Figure 2.3 present the percentage of the de facto household population 6-24 years of age enrolled in schools by age, sex, and residence. Forty-seven percent of children aged 6-15 years are enroled. However, enrolment for children aged 11-15 is comparatively high (71 percent) suggesting that many children start primary education after age 6 or 7 . In the age group 6-15 there is a slight difference in enrolment between rural and urban, with rural accounting for about 46 percent and urban about 52 percent. Enrolment after age 15 drops sharply, with only 18 percent of those 16-20 years old and 2 percent of those in their early 20 still in school.

Table 2.5 School enrolment
Percentage of the de facto household population age 6-24 years enrolled in school, by age group, sex, and urban/rural residence, Tanzania 1991/92

Age group	Male			Female			Total		
	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural	Total
6-10	31.6	22.6	24.4	33.3	26.6	27.9	32.5	24.6	26.2
11-15	74.9	71.6	72.4	71.0	68.6	69.0	73.1	70.1	70.8
6-15	53.6	45.7	47.4	50.8	45.7	46.7	52.3	45.7	47.0
16-20	29.3	23.7	25.1	14.6	10.5	11.6	21.4	17.0	18.1
21-24	8.6	1.8	3.7	3.4	0.7	1.4	5.7	1.2	2.4

Figure 2.3
School Enrolment by Age and Place of Residence

2.2 Housing Characteristics

In order to assess the economic and environmental conditions in which the respondents live, women were asked to give specific information about their household environment. Table 2.6 presents the percent distribution of households by housing characteristics according to residence. The source of drinking water and its distance from the household, type of sanitation facilities, and type of flooring materials are important determinants of the health status of household members.

Overall, only 7 percent of households in Tanzania have electricity. Dar es Salaam has the highest proportion of households with electricity (28 percent). In the rural areas only 1 percent of households have electricity.

Sources of drinking water differ considerably by area of residence. The three primary sources of drinking water for the Mainland are public wells, public taps, and rivers or streams. In Dar es Salaam, 70 percent of the households have piped water in their homes and 20 percent obtain water from public taps. In other urban centres, 46 percent of households obtain water from a public tap and about 27 percent have piped water in their houses. Major sources of water in Zanzibar are public wells (34 percent) and public taps (32 percent). In rural areas, only 2 percent of the households have piped water in their houses. The majority get water from a public well (33 percent), rivers or streams (24 percent), public taps (16 percent), and springs (12 percent).

Table 2.6 Housing characteristics
Percent distribution of households with eligible women by housing characteristics, according to urban/rural residence and region, Tanzania 1991/92

Characteristic	Mainland				Zanzibar	Total
	Total	Dar es Salaam	Other urban	Rural		
Electricity						
Yes	6.6	28.2	20.4	1.3	12.7	6.8
No	92.5	71.4	78.3	97.8	86.9	92.3
Missing	0.9	0.4	1.3	0.9	0.4	0.9
Source of drinking water						
Piped into residence	10.9	69.9	26.9	1.8	22.3	11.3
Public tap	21.8	20.1	45.8	16.1	31.8	22.2
Well in residence	1.2	1.8	1.1	1.1	3.3	1.2
Public well	28.1	5.7	14.7	33.3	33.8	28.3
Spring	9.2	0.2	1.6	11.9	7.4	9.1
River, stream	18.5	0.0	4.4	23.6	1.0	17.9
Pond, lake	3.8	0.0	2.3	4.5	0.0	3.7
Dam	1.8	0.0	0.0	2.4	0.2	1.8
Rainwater	0.2	0.0	0.0	0.3	0.0	0.2
Tanker	0.1	1.3	0.0	0.0	0.0	0.1
Other	3.0	0.0	1.9	3.5	0.1	2.9
Missing	1.4	1.0	1.3	1.4	0.0	1.3
Total	100.0	100.0	100.0	100.0	100.0	100.0
Sanitation facility						
Own flush toilet	0.9	2.6	3.2	0.2	1.1	0.9
Shared flush toilet	0.4	0.8	1.5	0.1	0.2	0.4
Traditional pit latrine	84.2	92.1	88.8	82.4	41.3	82.8
Improved pit latrine	1.3	1.9	3.4	0.7	1.3	1.3
No facility, bush	12.3	1.8	2.2	15.7	56.2	13.7
Missing/Don't know	0.9	0.8	0.9	0.9	0.0	0.9
Total	100.0	100.0	100.0	100.0	100.0	100.0
Flooring						
Earth, sand	80.2	24.3	57.0	90.9	69.2	79.8
Wood planks	0.1	0.2	0.0	0.1	0.0	0.1
Parquet, polished wood	0.0	0.2	0.0	0.0	0.0	0.0
Ceramic tiles	0.2	0.9	0.8	0.0	0.0	0.2
Cement	18.2	74.0	41.1	7.6	30.8	18.6
Other	0.1	0.0	0.0	0.2	0.0	0.1
Missing/Don't know	1.1	0.5	1.2	1.2	0.0	1.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Persons per sleeping room						
1-2	54.0	60.1	61.4	51.6	66.1	54.4
$3-4$	32.3	30.2	29.3	33.3	25.9	32.1
5-6	8.4	6.2	6.5	9.1	6.3	8.4
$7+$	3.1	2.5	0.9	3.7	1.2	3.0
Missing/Don't know	2.1	1.0	1.9	2.3	0.5	2.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Mean persons per room	2.8	2.5	2.5	2.9	2.5	2.8
Number of households	8057	537	1476	6044	269	8327

Modem sanitation facilities are not yet available to large proportions of the population. The use of traditional pit toilets is common in both urban and rural areas, accounting for about 83 percent of all households. An additional 14 percent of the households have no toilet facilities. This pattem is similar in most parts of the country except for Dar es Salaam and Zanzibar. In Dar es Salaam, 92 percent of the households use traditional pit toilets and 2 percent have no toilet facilities. In Zanzibar, 41 percent of the households use traditional pit toilets and 56 percent of the households have no toilets.

Eighty percent of the households have floors made of earth or sand and only 19 percent are made of cement. These percentages vary greatly. For example, in Dar es Salaam only 24 percent of the households have floors made of earth/sand and 74 percent use cement. Earth or sand flooring is used extensively in rural areas (91 percent), other urban centres (57 percent), and Zanzibar (69 percent). Other forms of floor materials, e.g., wood planks, parquet, and polished wood, are rarely used.

Information on the number of rooms that a household used for sleeping was collected with the intent of determining the extent of crowding. More than half of the households averaged one to two people per sleeping room and a third had three to four people sharing a sleeping room. There is very little diversity among the different geographical areas.

Household Durable Goods

Respondents were asked about ownership of particular household goods (e.g., radio and television to assess access to media, refrigerator to assess food storage) and modes of transportation (bicycle, motorcycle, car). The results presented in Table 2.7 indicate that 33 percent of households own a radio, with ownership being highest in Dar es Salaam (70 percent) and Iowest in rural areas (25 percent). Less than 1 percent of households in Tanzania possess a television set. Since the Mainland does not have a television station, the percent of households with a television set is lower than in Zanzibar, where there is a television station. Refrigerators are not very common and are mainly found in urban areas.

Table 2.7 Household durable goods
Percentage of households with eligible women possessing various durable consumer goods, by urban/rural residence and region, Tanzania 1991/92

	Mainland					
	Total	Dar es Salaam	Other urban	Rural	Zanzibar	Total
Possession	32.5	69.6	51.5	24.6	48.9	33.1
	0.4	2.0	0.9	0.1	4.7	0.5
Radio	1.1	7.8	1.9	0.3	3.1	1.2
Television	21.2	10.5	23.7	21.5	32.8	21.5
Refrigerator	0.7	1.2	1.2	0.6	1.6	0.8
Bicycle	1.3	3.7	2.3	0.9	1.5	1.3
Motorcycle						
Private car	8057	537	1476	6044	269	8327
Number of households						

Bicycles are the most common means of transport owned by households. Twentytwo percent of rural households, 11 percent of households in Dar es Salaam, and 33 percent of households in Zanzibar own a bicycle. Only 1 percent of surveyed households owns an automobile, and most of them are located in Dar es Salaam and other urban areas.

2.3 Background Characteristics of Survey Respondents

General Characteristics

Table 2.8 shows the percent distribution of women by age, marital status, urban/rural residence, region, religion, and level of education. Eligible women were asked two questions to determine their ages, "In what month and year were you bom?" and "How old were you at your last birthday?" Interviewers were trained in probing techniques for situations in which respondents did not know their age or date of birth, and as a last resort, interviewers were instructed to record their best estimate of the respondent's age.

Data on marital status of the women at the time of the survey show that 25 percent had never married, 65 percent were in unions (47 percent in monogamous unions and 18 percent in polygamous unions), and 10 percent were divorced, separated, or widowed.

The vast majority of women live on the mainland (97 percent), with only 3 percent living on Zanzibar. One-quarter of women live in urban areas on the mainland, and almost three quarters in rural areas.

One-third of respondents had never attended school. Forty-two percent had completed primary school and only 5 percent of women had gone beyond the primary education level.

Table 2.8 Background characteristics of respondents
Percent distribution of women by selected background characteristics, Tanzania 1991/92

		Number of women	
Background characteristic	Weighted percent	WeightedUn- weighted	

Age			
15-19	23.6	2183	2229
20-24	20.4	1882	1849
25-29	17.3	1599	1573
30-34	12.6	1165	1121
35-39	10.8	1000	1010
40-44	7.7	715	757
45-49	7.5	695	699
Marital status			
Never married	24.5	2261	2188
Married, monogamous	47.4	4379	4381
Married, polygamous	18.0	1659	1710
Widowed/Divorced/Sep.	10.2	939	959
Education			
No education	33.9	3128	3259
Primary incomplete	19.8	1825	1887
Completed primary	41.6	3841	3653
Secondary/Higher	4.8	444	439
Residence			
Mainland	97.2	8978	8718
Dar es Salaam	6.3	585	505
Other urban	18.3	1686	1178
Rural	72.6	6707	7035
Zanzibar	2.8	260	520
Region ${ }^{1}$			
Dodoma	7.0	649	341
Arusha	6.2	573	367
Kilimanjaro	5.6	516	438
Tanga	5.1	471	383
Morogoro	5.5	512	486
Coast	1.7	159	377
Lindi	2.3	217	347
Mtwara	3.9	363	343
Ruvuma	3.5	320	455
Iringa	5.1	475	378
Mbeya	4.9	449	304
Singida	3.8	355	409
Tabora	2.9	271	414
Rukwa	2.4	217	496
Kigoma	4.1	375	496
Shinyanga	8.6	793	614
Kagera	6.6	608	384
Mwanza	7.2	666	590
Mara	4.4	403	591
Rellgion			
Muslim	30.7	2834	3202
Catholic	30.1	2777	2694
Protestant	25.0	2308	2049
None	13.8	1271	1242
Other religion	0.0	0	1
Missing	0.5	47	50
All women	100.0	9238	9238

${ }^{1}$ Excludes Dar es Salaam and Zanzibar.

The three major religions reported by women were Islam (31 percent), Catholicism (30 percent), and Protestantism (25 percent). Fourteen percent of all women either adhere to traditional religions or have no religion.

Differentials in Education

Table 2.9 shows the percent distribution of women by highest level of education attained according to age, residence, and region. Education is inversely related to age; older women are generally less educated than younger women. The survey results show that 74 percent of women age $45-49$ have had no formal education in contrast to 15 percent of women age 15-19. The percentage of women with no education increases with age while the proportion of women with completed primary or secondary/higher education decreases with age, indicating recent improvements in educational attainments.

Urban women fare better than rural women in education. While 38 percent of rural women have never been to school, only 20 percent of women in other urban areas and 19 percent in Dar es Salaam have never been to school. Zanzibar has a much higher proportion of women with no education (41 percent) than Mainland (34 percent).

Generally, only a small proportion of women continue education beyond the primary level. The situation is worst in rural areas where only 2 percent of women have secondary or higher education. Due to the difference in the secondary education system between the Mainland and Zanzibar, 28 percent of women in Zanzibar have secondary education compared to 4 percent in Mainland.

A comparison among regions shows that only 9 percent of the women in Kilimanjaro have no education. On the other hand, about half of the women in Shinyanga have never been to school. The Arusha and Kilimanjaro regions have the highest proportion of women with secondary or higher education (13 and 12 percent, respectively). Mtwara, Kigoma, Mbeya, and Mara have the lowest levels of post-primary education (less than 1 percent have secondary or higher education).

Access to Media

Women were asked if they usually listen to a radio or watch television at least once a week. This information is important to programme planners seeking to reach women with family planning and health messages through the media. Table 2.10 shows that one quarter of women read newspapers and 46 percent listen to the radio. Only 3 percent watch television. Access to the media is somewhat higher among younger women (under 30 years): half of these women listen to the radio at least once a week and about 30 percent read newspapers. Educated women have more access to the media than those with less education and the proportion of women with access to media is higher in urban than in rural areas.

Table 2.9 Level of education
Percent distribution of women by highest level of education attended, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Level of education					Number of women
	$\begin{gathered} \text { No } \\ \text { educa- } \\ \text { tion } \end{gathered}$	Primary incomplete	Completed primary	Secondary/ Higher	Total	
Age						
15-19	15.3	23.0	55.3	6.4	100.0	2183
20-24	16.2	12.2	63.4	8.1	100.0	1882
25-29	27.9	15.7	52.4	4.0	100.0	1599
30-34	44.9	20.6	30.0	4.5	100.0	1165
35-39	56.5	24.4	16.9	2.3	100.0	1000
40-44	61.6	28.6	8.2	1.6	100.0	715
45-49	74.2	22.0	3.7	0.1	100.0	695
Residence						
Mainland	33.7	20.0	42.3	4.1	100.0	8978
Dar es Salaam	18.7	15.2	56.7	9.5	100.0	585
Other urban	20.3	18.4	50.6	10.7	100.0	1686
Rural	38.3	20.8	38.9	2.0	100.0	6707
Zanzibar	41.0	12.9	18.1	28.0	100.0	260
Region						
Dodoma	35.6	16.5	45.8	2.2	100.0	649
Arusha	31.7	15.3	39.9	13.1	100.0	573
Kilimanjaro	8.5	19.2	60.9	11.5	100.0	516
Tanga	26.1	18.9	53.5	1.6	100.0	471
Morogoro	35.1	21.6	40.3	3.0	100.0	512
Coast	40.6	19.8	36.8	2.7	100.0	159
Lindi	33.9	26.2	38.5	1.4	100.0	217
Mtwara	45.3	21.5	33.0	0.2	100.0	363
Ruvuma	19.9	30.2	48.2	1.7	100.0	320
Iringa	42.3	11.6	43.3	2.9	100.0	475
Mbeya	32.7	16.6	49.8	0.9	100.0	449
Singida	29.0	24.4	40.8	5.8	100.0	355
Tabora	47.0	23.1	27.7	2.1	100.0	271
Rukwa	46.1	22.0	30.8	1.1	100.0	217
Kigoma	38.9	17.5	43.0	0.6	100.0	375
Shinyanga	51.7	17.3	28.8	2.1	100.0	793
Kagera	30.7	24.3	37.7	7.4	100.0	608
Mwanza	36.7	22.9	37.8	2.6	100.0	666
Mara	30.2	28.9	40.3	0.6	100.0	403
Total	33.9	19.8	41.6	4.8	100.0	9238

Table 2.10 Access to mass media

Percentage of women who usually read a newspaper once a week, watch television once a week, or listen to radio once a week, by selected background characteristics, Tanzania 1991/92

Background characteristic	Read newspaper weekly	Watch television weekly	Listen to radio weekly	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { women } \end{aligned}$
Age				
15-19	31.1	4.3	50.1	2183
20-24	34.2	4.5	53.3	1882
25-29	26.6	3.1	49.0	1599
30-34	21.1	3.1	46.4	1165
35-39	16.4	2.2	37.6	1000
40-44	12.4	2.7	35.1	715
45-49	8.5	1.6	32.4	695
Education				
No education	0.5	1.5	25.6	3128
Primary incomplete	22.3	1.7	41.4	1825
Completed primary	40.1	4.1	59.9	3841
Secondary/Higher	76.8	18.7	93.4	444
Residence				
Mainland	24.6	3.1	45.3	8978
Dar es Salaam	71.8	12.0	89.8	585
Other urban	47.3	7.2	71.2	1686
Rural	14.8	1.3	35.0	6707
Zanzibar	37.6	14.6	77.0	260
Region				
Dodoma	18.6	0.3	34.7	649
Arusha	37.5	5.1	63.8	573
Kilimanjaro	46.1	5.5	72.7	516
Tanga	25.1	1.7	39.4	471
Morogoro	26.1	3.7	42.3	512
Coast	38.6	7.5	65.5	159
Lindi	17.7	3.1	42.2	217
Mtwara	11.2	3.0	26.2	363
Ruvuma	17.3	2.0	43.8	320
Iringa	18.4	3.1	30.8	475
Mbeya	15.8	0.3	45.9	449
Singida	27.8	5.5	43.2	355
Tabora	8.9	0.7	28.7	271
Rukwa	13.9	1.2	31.7	217
Kigoma	15.6	0.8	41.6	375
Shinyanga	12.4	1.3	29.5	793
Kagera	13.7	2.3	35.5	608
Mwanza	19.0	2.4	44.6	666
Mara	21.8	0.8	47.6	403
Total	24.9	3.4	46.2	9238

CHAPTER 3

FERTILITY

The fertility measures presented in this chapter are based on the reported birth histories of women between 15 and 49 years old who were interviewed in the TDHS. Every woman was asked the number of sons and daughters who either were living with her, were living elsewhere, or had died. Also, she was asked for a history of her births, including the month and year each child was borm; the name and sex; if deceased, the age at death; and if alive, the current age and whether the child was living with the mother. The information obtained from these questions was used to calculate measures of current and completed fertility, i.e., the number of children ever borm.

3.1 Current Fertility

The current level of fertility is presented in this chapter because it has a direct relevance to population policies and programmes. Threeyear age-specific fertility rates are presented in Table 3.1. The purpose of calculating three-year rates is to reduce errors that emanate from the size of the sample and to avoid problems caused by the displacement of births from five years preceding the survey to six. This latter practise is often done by the interviewer in order to reduce the amount of work that would have to be done. The sum of the age-specific fertility rates is called the total fertility rate (TFR), which can be defined as the number of children a woman would have by the end of her childbearing years if she were to pass through the years bearing children at the currently observed age-specific fertility rates. As shown in Table 3.1, the total fertility rate is 6.3 .

The crude birth rate, also presented in Table 3.1, stands at 43 per thousand over the three years prior to the survey. This estimate is close to the 46 per 1,000 that was estimated from the 1988 Population Census.

The age-specific fertility rates derived from the TDHS can be compared with data from the 1988 census (Figure 3.1). Except for the two youngest age groups, fertility rates are lower in the TDHS than in the census. The fertility decline appears to be greatest among women aged 25-39.

TFR: Total fertility rate expressed per woman
GFR: General fertility rate (births divided by number of women 15-44), expressed per 1,000 women
CBR: Crude birth rate, expressed per 1,000 population
Note: Rates are for the period $1-36$ months preceding the survey. Rates for age group 45-49 may be slightly biased due to truncation.

The total fertility rates by level of education and by place of residence can be summarized in Table 3.2 and Figure 3.2. Due to small sample sizes for some categories, the data should be viewed with caution. Dar es Salaam has considerably lower fertility than other urban and rural areas in Tanzania. In TDHS an attempt was made to compare fertility estimates by region. Due to the small numbers of women, the ability to make regional comparisons was seriously compromised. To avoid this problem, regions were grouped into six "zones," mainly based on geographic and ecologic characteristics. This strategy enhanced the power to make the necessary geographical comparisons by distributing relatively large numbers of women in each zone. However, it should be noted that these zones do not conform to the administrative zones of the United Republic of Tanzania. The classification of regions into the zones is shown below:

Coastal zone:
Northem Highlands zone:
Lake zone:
Central zone:
Southem Highlands zone:
Southem zone:

Tanga, Morogoro, Coast, Dar es Salaam and Zanzibar Arusha and Kilimanjaro Tabora, Kigoma, Shinyanga, Kagera, Mwanza, and Mara Dodoma and Singida Iringa, Mbeya, and Rukwa Lindi, Mtwara, and Ruvuma

Total fertility rates are lowest in the Southern regions and Coastal zone (5.1 and 5.7 children per woman, respectively). Lake and Central regions have the highest levels of fertility (6.9 and 7.1 children per woman, respectively).

Women with secondary education have a total fertility rate of 4.2 children per woman, which is considerably less than all other women. Women who have only completed a primary education have a total fertility of 6.0 ; women with incomplete primary education and women with no formal education have total fertility rates of 6.4 and 6.5 , respectively.

Table 3.2 Fertility by background characteristics
Total fertility rate for the three years preceding the survey and mean number of children ever born to women age $40-$ 49, by selected background characteristics, Tanzania 1991/92
$\left.\begin{array}{lcc}\hline \text { Background } \\ \text { characteristic }\end{array} \quad \begin{array}{c}\text { Total } \\ \text { ferility } \\ \text { rate }\end{array} \quad \begin{array}{c}\text { Mean number } \\ \text { of children } \\ \text { ever bom } \\ \text { to women } \\ \text { age 40-49 }\end{array}\right]$
${ }^{1}$ Rate for women age $15-49$ years

Figure 3.2
Total Fertility Rate by Background Characteristics

Fertility trends can be analysed in two ways. One way is to compare TDHS data with previous censuses. As has been observed (see Table 1.1), the 1978 and 1988 censuses reveal that fertility declined over time, from 6.9 to 6.5 to 6.3 according to the TDHS.

A second way to analyse fertility trends is by using the TDHS data alone. Table 3.3 shows the agespecific fertility rates for four-year periods preceding the survey. Four-year periods were used instead of the usual five-year periods in order to avoid the effects of shifting births from five to six years preceding the survey. According to the table, there has been a gradual decline in fertility during the last 20 years, e.g., the cumulative fertility of women age $15-34$ decreased from 5.7 to 4.6 during this period.

Table 3.3 Age-specific fertility rates
Age-specific fertility rates (per thousand women) for four-year periods preceding the survey, by mother's age at the time of birth, Tanzania 1991/92

	Number of years preceding the survey				
Mother's age	$0-3$	$4-7$	$8-11$	$12-15$	$16-19$
$15-19$					
$20-24$	139	146	158	185	209
$25-29$	281	285	289	316	309
$30-34$	266	269	289	311	297
$35-39$	226	268	275	269	$[320]$
$40-44$	176	185	202	$[257]$	-
$45-49$	$[40$	$[15]$	$[176]$	-	-
		$[34]$	-	-	-

Note: Age-specific fertility rates are per 1,000 women. Estimates enclosed in brackets are truncated.

A similar pattern is observed in Table 3.4 which shows the fertility rates for ever-married women by duration since first marriage. For the same marriage duration, fertility has declined over time.

Table 3.4 Fertility by marital duration
Fertility rates for ever-married women by duration since first marriage in years, for four-year periods preceding the survey, Tanzania 1991/92

Marriage duration at birth	Number of years preceding the survey					

Note: Duration-specific fertility rates are per 1,000 women. Estimates enclosed in brackets are truncated.

3.2 Children Ever Born and Living

The distribution of all women by number of children ever born is presented in Table 3.5 for all women and currently married women. The mean number of children ever born increases with age; at the end of her reproductive period, the Tanzanian woman has given birth to about 7 children. About three percent of women 40 years and older are childless.

Currently married women at the end of their childbearing years have given birth to an average of seven children (7.2). Among currently married women aged 40-49 only two percent are childless.

Data on children ever bom from the TDHS and the 1988 Census can be compared in Figure 3.3. Up to about age 40 the two data sets exhibit remarkably similar results, which suggests good data quality in each.

Table 3.5 Children ever born and living
Percent distribution of all women and of currently married women by number of children ever born (CEB) and mean number ever born and living, according to five-year age groups, Tanzania 1991/92

Age group	Number of children ever born (CEB)											Total	Number of women	Mean no.ofCEB	Mean no. of living children
	0	1	2	3	4	5	6	7	8	9	10+				
ALL WOMEN															
Age															
15-19	76.8	19.7	3.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	2183	0.27	0.24
20-24	24.3	30.5	28.6	12.1	3.9	0.5	0.0	0.0	0.0	0.0	0.0	100.0	1882	1.42	1.24
15-29	6.4	12.7	21.3	24.7	18.7	11.2	3.6	1.0	0.4	0.1	0.0	100.0	1599	2.92	2.48
30-34	4.3	5.9	8.2	12.5	16.4	20.9	16.9	10.2	2.6	1.5	0.7	100.0	1165	4.43	3.75
35-39	1.9	4.1	3.2	8.4	8.7	15.5	17.8	14.6	13.2	7.5	5.1	100.0	1000	5.83	4.80
40-44	2.6	3.7	4.5	3.2	6.0	8.1	12.8	15.6	12.6	11.9	18.9	100.0	715	6.90	5.65
45-49	4.1	3.7	2.5	4.4	7.5	8.5	9.2	13.3	13.8	11.7	21.4	100.0	695	6.94	5.43
Total	25.5	14.8	12.2	9.8	8.1	7.6	6.4	5.2	3.8	2.8	3.7	100.0	9238	3.11	2.58
CURRENTLY MARRIED WOMEN															
Age															
15-19	42.1	48.4	9.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100.0	558	0.68	0.60
20-24	10.9	31.3	35.8	16.2	5.2	0.7	0.1	0.0	0.0	0.0	0.0	100.0	1283	1.76	1.53
15-29	3.5	10.3	19.3	27.3	20.7	12.8	4.3	1.2	0.5	0.0	0.0	100.0	1274	3.16	2.70
30-34	1.4	4.8	8.1	12.8	17.1	21.2	17.6	11.2	3.0	1.8	0.9	100.0	935	4.67	3.96
35-39	1.4	4.1	2.7	7.4	7.8	15.4	19.0	15.5	13.6	7.8	5.5	100.0	841	5.98	4.92
40-44	2.3	3.1	3.8	2.0	6.0	8.0	13.0	16.2	13.5	12.2	19.8	100.0	603	7.09	5.82
45-49	2.3	4.5	1.7	4.2	6.1	7.4	10.1	13.3	14.6	12.6	23.2	100.0	545	7.24	5.67
Total	7.8	15.3	14.7	12.8	10.4	9.7	8.5	7.0	5.1	3.7	5.0	100.0	6038	4.02	3.34

Figure 3.3

Children Ever Born to Women 15-49

 1988 Census and 1991/92 TDHS

3.3 Birth Intervals

The timing of births has implications for both fertility and mortality. A woman who has births spaced closely together most likely will complete her childbearing years with more children than one who spaces her births farther apart. Babies who are borm within a short interval are subject to poor health and thus are more exposed to the risks of dying than those who are born after longer birth intervals. Table 3.6 shows the percent distribution of births in the five years before the survey by interval since previous birth by demographic and background characteristics. Half of all births occurred after an interval of 33 months, 18 percent of all births occurred less than 24 months after a previous birth, 63 percent occurred at an interval between 24 and 47 months, and 19 percent of the births occurred at an interval of four years or more. In general, there are only small differences in median birth interval length between subgroups. However, if the previous child is deceased, birth intervals are about 6 months shorter than if the previous child is surviving. Younger women also have shorter birth intervals than older women.

Table 3.6 Birth intervals
Percent distribution of births in the five years preceding the survey by number of months since previous birth, according to demographic and socioconomic characteristics, Tanzania 1991/92

Characteristic	Number of months since previous birth					Total	Median number of months since previous birth	Number of births
	7-17	18-23	24-35	36-47	48+			
Age of mother								
15-19	18.3	20.4	49.8	9.2	2.2	100.0	25.4	78
20-29	6.4	14.1	49.1	17.1	13.4	100.0	30.9	3046
30-39	5.1	10.5	40.0	20.6	23.8	100.0	35.0	2430
$40+$	3.7	7.5	34.5	25.9	28.4	100.0	38.1	743
Birth order								
2.3	6.1	13.1	45.8	17.5	17.5	100.0	32.1	2604
4 -6	4.7	11.2	44.8	18.8	20.5	100.0	33.6	2295
$7+$	6.7	11.2	38.8	23.7	19.6	100.0	34.5	1398
Sex of prior birtb								
Male	5.8	11.5	44.0	19.1	19.6	100.0	33.4	3178
Female	5.6	12.5	43.7	19.7	18.5	100.0	33.1	3119
Survival of prior birth								
Living	3.3	11.3	45.4	20.7	19.3	100.0	33.9	5339
Dead	19.2	16.2	35.4	11.7	17.5	100.0	28.3	958
Residence 10.611 .9								
Mainland	5.6	11.9	43.9	19.5	19.1	100.0	33.3	6108
Dar es Salaam	5.3	6.5	44.7	22.4	21.1	100.0	34.7	270
Other urban	4.7	12.4	39.8	19.8	23.3	100.0	34.4	934
Rural	5.7	12.1	44.7	19.3	18.2	100.0	33.1	4904
Zanzibar	11.1	15.4	42.1	14.4	17.0	100.0	30.4	189
Zone								
Coastal	6.2	10.0	41.2	20.9	21.6	100.0	34.6	1238
Northern Highlands	6.5	16.5	34.8	15.8	26.4	100.0	33.5	714
Lake	6.8	14.4	48.5	16.2	14.1	100.0	30.7	2317
Central	4.0	9.5	48.4	23.3	14.8	100.0	33.2	723
Southern Highlands	3.8	9.5	40.4	23.3	23.0	100.0	36.1	805
South	3.9	7.1	41.3	22.9	24.8	100.0	36.3	501
Region 40.0								
Dodoma	4.0	7.3	49.9	25.3	13.5	100.0	33.3	500
Arusha	6.0	17.2	33.7	14.7	28.5	100.0	33.8	427
Kilimanjaro	7.3	15.5	36.4	17.5	23.4	100.0	32.9	287
Tanga	5.9	11.8	37.6	18.9	25.8	100.0	34.8	323
Morogoro	5.3	8.7	39.6	24.6	21.8	100.0	35.5	365
Coast	3.7	7.5	48.6	22.8	17.4	100.0	33.6	91
Lindi	5.1	6.8	34.8	27.0	26.2	100.0	37.8	140
Mtwara	3.3	4.4	37.3	20.5	34.6	100.0	38.3	152
Ruvuma	3.5	9.2	48.6	21.9	16.9	100.0	34.5	209
Iringa	2.6	7.0	37.9	27.8	24.7	100.0	37.7	352
Mbeya	4.3	11.7	39.5	20.9	23.6	100.0	35.4	283
Singida	4.1	14.5	45.0	18.9	17.6	100.0	32.8	223
Tabora	4.9	8.6	42.1	26.6	17.8	100.0	34.9	186
Rukwa	5.6	11.0	47.0	18.1	18.4	100.0	33.6	171
Kigoma	6.7	15.0	53.5	14.3	10.4	100.0	30.2	296
Shinyanga	7.3	13.8	49.0	15.5	14.4	100.0	30.5	633
Kagera	8.4	17.1	45.6	15.2	13.6	100.0	30.8	445
Mwarza	6.5	13.3	52.3	15.8	12.1	100.0	29.7	466
Mara	5.0	16.5	44.5	15.4	18.5	100.0	31.3	292
Education 210.5								
No education	5.4	11.5	40.8	21.4	20.9	100.0	34.5	2574
Primary incomplete	5.0	10.5	45.6	19.0	19.9	100.0	33.3	1288
Completed primary	5.9	13.7	47.0	17.4	16.0	100.0	32.0	2277
Secondary/Higher	14.1	8.2	34.7	17.6	25.4	100.0	34.1	158
Total	5.7	12.0	43.9	19.4	19.0	100.0	33.3	6297

Note: First-order births are excluded. The interval for multiple births is the number of months since the preceding pregnancy that ended in a live birth.

3.4 Age at First Birth

The age at which childbearing begins has important demographic consequences and also consequences for the mother and child. A rise in the age at first birth is usually a reflection of the increase of age at first marriage, though the opposite may not be true. In many countries, postponement of first births, reflecting an increase in age at marriage, has contributed greatly to overall fertility decline. Table 3.7 shows the percent distribution of women by age at first birth according to current age of the mother. While 10 percent of older women (45-49) had their first birth before age 15 , only 4 percent of the younger women (2024) had their first birth before reaching age 15. Among older women (45-49), 60 percent had their first birth before reaching age 20 , whereas 57 percent of the young women had their first birth before age 20 . The median age at first birth has increased by about one year across cohorts age 40-44 to 20-24.

Table 3.7 Age at first birth
Percent distribution of women 15-49 by age at first birth, according to current age, Tanzania 1991/92

Current age	$\begin{aligned} & \text { Women } \\ & \text { with } \\ & \text { no } \\ & \text { births } \end{aligned}$	Age at first birch						Total	Number of women	Median age at first birth
		<15	15-17	18-19	20-21	22-24	$25+$			
15-19	76.8	0.9	13.9	8.4	NA	NA	NA	100.0	2183	a
20-24	24.3	4.0	24.3	28.5	14.7	4.2	NA	100.0	1882	19.5
25-29	6.4	5.6	26.1	24.7	19.3	12.6	5.4	100.0	1599	19.5
30-34	4.3	9.2	35.6	20.8	14.6	10.4	5.1	100.0	1165	18.5
35-39	1.9	8.0	36.8	22.0	13.6	10.1	7.4	100.0	1000	18.4
40-44	2.6	9.7	34.4	21.2	13.6	11.0	7.5	100.0	715	18.5
45-49	4.1	9.7	31.3	19.1	14.5	10.5	10.9	100.0	695	18.8

[^0]${ }^{a}$ Less than 50 percent of the women in the age group x to $x+4$ have had a birth by age x

Table 3.8 presents the median age at first birth by place of residence and education. There is no variation in age at first birth by place of residence, but there is a substantial increase in the age at first birth with increasing levels of education.

Table 3.8 Median age at first birch
Median age at first birth among women age 20-49 years, by current age and selected background characteristics, Tanzania 1991/92

Background characteristic	Current age						$\begin{gathered} \text { Ages } \\ 20-49 \end{gathered}$	$\begin{aligned} & \text { Ages } \\ & 25-49 \end{aligned}$
	20-24	25-29	30-34	35-39	40-44	45-49		
Residence								
Mainland	19.5	19.5	18.5	18.4	18.5	18.8	19.0	18.8
Dar es Salaam	a	20.1	18.8	(17.8)	(18.2)	(17.4)	19.4	18.7
Other urban	20.0	19.7	17.7	17.7	18.5	18.3	18.9	18.5
Rural	19.3	19.4	18.7	18.7	18.5	19.0	19.0	18.9
Zanzibar	19.7	19.5	18.3	(17.3)	(17.8)	(18.9)	18.8	18.4
Education								
No education	18.3	17.9	18.1	18.3	18.4	18.9	18.3	18.3
Primary incomplete	18.4	18.6	17.2	17.9	18.3	18.6	18.1	18.1
Completed primary	19.7	20.2	19.6	19.5	20.0	19.3	19.8	20.0
Secondary/Higher	a	23.9	23.1	*	*	*	a	23.4
Total	19.5	19.5	18.5	18.4	18.5	18.8	19.0	18.8

Note: The medians for cohort 15-19 could not be determined because half the women have not yet had a birth. Rates shown in parentheses are based on 25-49 women, whereas an asterisk means the rate is based on fewer than 25 women and has been suppressed.
${ }^{\text {a }}$ Medians were not calculated for these cohorts because less than 50 percent of women in the age group x to $x+4$ have had a birth by age x.

3.5 Teenage Pregnancy and Motherhood

The issue of fertility among women aged 15-19 is vital because teenage mothers and their children are at high risk for social and health problems. Children born to young mothers are more prone to illness and higher mortality during childhood than children born to older mothers.

Table 3.9 presents the percentage of teenagers aged 15-19 who are mothers or are pregnant with their first child by background characteristics. Overall, 29 percent of teenagers covered by this survey have already begun childbearing (i.e., they have given birth or had their first pregnancy at the time of the survey). Among those age 15 , three percent have begun childbearing and among those age 19 , almost 60 percent have
t a birth or are pregnant.

Table 3.9 Teenage pregnancy and motherhood
Percentage of teenagers $15-19$ who are mothers or pregnant with their first child, by selected background characteristics, Tanzania 1991/92

Background characteristic	Percentage who are:		Percentage who have begun childbearing	Number of teenagers
	Mothers	Pregnant with first child		
Age				
15	0.5	2.7	3.2	392
16	6.0	4.1	10.1	474
17	18.2	9.3	27.6	387
18	33.7	6.5	40.2	457
19	53.3	6.2	59.4	474
Residence				
Mainland	23.2	5.8	29.0	2114
Dar es Salaam	15.5	6.2	21.7	162
Other urban	25.7	4.8	30.5	421
Rural	23.3	6.1	29.4	1531
Zanzibar	23.9	2.2	26.1	69
Zone				
Coastal	24.1	5.2	29.4	480
Northern Highlands	11.8	2.0	13.8	228
Lake	22.4	5.6	28.0	813
Central	26.2	7.7	34.0	235
Southern Highlands	27.3	7.0	34.4	219
South	29.2	7.9	37.1	208
Education				
No education	29.1	6.4	35.5	333
Primary incomplete	16.4	4.0	20.4	503
Completed primary	26.8	6.7	33.5	1207
Secondary/Higher	3.1	1.5	4.6	139
Total	23.2	5.7	29.0	2183

Although most teenagers who have begun childbearing have given birth only once, a small proportion of them have given birth twice. Table 3.10 shows the percent distribution of teenagers $15-19$ by number of children ever born according to single years of age. Twenty percent of teenagers have given birth to one child and 4 percent have had 2 or more children. The mean number of children ever born among teenagers is 0.3 .

Table 3.10 Children bom to teenagers
Percent distribution of teenagers $15-19$ by number of children ever born (CEB),
Tanzania 1991/92

Age	Number of children ever born			Total	Mean number of CEB	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { teenagers } \end{aligned}$
	0	1	$2+$			
15	99.5	0.5	0.0	100.0	0.00	392
16	94.0	5.8	0.2	100.0	0.06	474
17	81.8	16.0	2.2	100.0	0.20	387
18	66.3	28.1	5.7	100.0	0.40	457
19	46.7	44.4	8.9	100.0	0.62	474
Total	76.8	19.7	3.6	100.0	0.27	2183

CHAPTER 4

FERTILITY REGULATION

4.1 Knowledge of Contraception

Knowing about contraceptives is an important step needed before one can actually use contraceptives. Information on an individual's contraceptive knowledge was obtained at the interview by asking the respondent to name ways or methods by which a couple could delay or avoid pregnancy. If the respondent failed to mention a particular method spontaneously, the interviewer mentioned and described the method and asked if the respondent knew it. The following modern methods were described: pills, IUD, injections, barrier methods (diaphragm, foam, and jelly), condoms, and female and male sterilisation. Three traditional methods were also described-periodic abstinence (rhythm method), mucus method, and withdrawal. For each method recognised, the respondent was asked if she knew where it could be obtained. If she reported knowing about the nyythm method, she was asked if she knew where a person could obtain advice on how to use the method. The results are presented in Table 4.1.

Table 4.1 Knowledge of contraceptive methods and source for methods
Percentage of all women and currently married women who know specific contraceptive methods and who know a source (for information or services), by specific methods, Tanzania 1991/92

Contraceptive method	Know method		Know a source	
	All women	Currently married women	All women	Currently married women
Any method	74.4	80.2	65.5	71.4
Any modern method	72.2	77.6	65.1	71.1
Modern method				
Pill	68.9	74.6	59.5	65.6
IUD	31.3	35.0	29.1	32.7
Injection	39.6	44.0	36.5	40.7
Diaphragm/foam/jelly	19.5	22.2	17.9	20.4
Condom	51.3	55.0	44.8	48.3
Female sterilisation	49.5	54.6	46.0	50.8
Male sterilisation	10.1	11.3	9.3	10.5
Any traditional method	44.1	48.9	NA	NA
Periodic abstinence	23.3	24.7	19.1	20.7
Mucus method	9.3	9.8	NA	NA
Withdrawal	23.9	27.1	NA	NA
Other	21.2	24.6	NA	NA
Number of women	9238	6038	9238	6038

$N A=$ Not applicable

Of all Tanzanian women aged 15-49 years who were interviewed in the survey, 74 percent knew at least one method of family planning. The level of knowledge was slightly higher (80 percent) among currently married women. A majority of all women interviewed (72 percent) knew at least one modern contraceptive method, while less than half (44 percent) reported knowing at least one traditional method. Currently married women were relatively more likely to know of modern contraceptive methods (78 percent) and traditional methods (49 percent). Since currently married women are regarded to be at highest risk of getting pregnant, the remaining sections of this chapter will focus on them. However, in interpreting the results it is recommended that readers take into consideration that out of 9238 women interviewed, 6038 (65 percent) were currently married. Hence, currently married women constitute two thirds of all women covered by this study.

The modern contraceptive methods most frequently reported by currently married women were pills (75 percent), condom (55 percent) and female sterilization (55 percent). Other methods commonly reported were injections (44 percent), IUD (35 percent), and barrier methods (22 percent). Male sterilization was the least known modern method of contraception. As for the traditional methods, 25 percent of married women knew periodic abstinence, while 27 percent knew withdrawal. Only 10 percent of currently married women knew the mucus method. Overall, the level of knowledge of both modern and traditional contraceptive methods was slightly lower among all women when compared to currently married women, suggesting that women not currently married were less likely to be aware of contraceptive methods.

Results of several other studies in Tanzania (Kapiga et al., 1993; Ministry of Health, 1992) showed widespread knowledge of modern contraceptive methods, with pills being the best known. The high level of knowledge of the pill may be due to its wide availability in most family planning service delivery points and for the fact that it is the most used method in Tanzania. Data presented in the subsequent sections of this chapter support this observation. The observed high level of knowledge of condoms has been reported in several other studies (NACP, 1992; Ministry of Health, 1992) and has been associated with the ongoing HIV/AlDS campaign in which condom use is promoted as a preventive measure.

Only 12 percent of currently married women who knew of pills were not aware of a place where they could obtain this method, and 7 percent of currently married women who knew female sterilization did not know where this procedure was done. As for other modern contraceptive methods, a majority of women were not aware of the place where these methods could be obtained. In general, about 92 percent of currently married women who know a modern method also are aware of where it can be obtained.

The association between age, education, and region where respondents were residing at the time of the survey, knowledge of family planning methods, and sources where such methods could be obtained was assessed in Table 4.2.

Knowledge of at least one method of contraception among currently married women is low in the extreme age groups (15-19 years and 45-49 years). The level of knowledge increases with age, reaches a peak at 30-34 years, and then decreases to reach the lowest level at 45-49 years. A similar pattern was observed for knowledge of modern contraceptives and a source where the methods could be obtained.

Overall, the level of knowledge of contraceptive methods and of a place where they could be obtained is lower on the Tanzania mainland than in Zanzibar. However, due to the small number of currently married women interviewed in Zanzibar (only 168), comparisons with mainland Tanzania should be regarded cautiously. Within mainland Tanzania, the level of knowledge is lower in rural areas than in urban areas.

Table 4.2 Knowledge of modern contraceptive methods and source for methods

Percentage of currently married women who know at least one modern contraceptive method and who know a source (for information or services), by selected background characteristics, Tanzania 1991/92

Background characteristic	Know any method	Know a modern method ${ }^{1}$	Know a source for modem method	Number of women
Age				
15-19	70.9	68.7	58.4	558
20-24	81.4	79.6	73.0	1283
25-29	84.5	82.6	76.0	1274
30-34	85.5	83.7	77.5	935
35-39	79.7	76.7	72.2	841
40-44	80.1	76.6	70.0	603
45-49	69.2	62.7	56.3	545
Residence				
Mainland	79.8	77.1	70.5	5870
Dar es Salaam	91.7	91.1	84.9	349
Other urban	94.2	93.8	89.1	966
Rural	75.8	72.5	65.4	4555
Zanzibar	95.9	95.9	92.5	168
Region				
Dodoma	94.9	93.1	86.5	445
Arusha	70.3	65.4	58.8	350
Kilimanjaro	94.5	94.5	93.4	258
Tanga	71.1	69.9	67.0	306
Morogoro	93.6	93.0	90.1	334
Coast	90.8	89.4	79.7	98
Lindi	94.4	93.8	81.3	155
Mtwara	81.9	78.9	66.3	249
Ruvuma	92.2	91.1	80.1	210
Iringa	70.3	68.6	63.7	338
Mbeya	75.9	70.9	70.6	333
Singida	86.6	84.8	82.5	190
Tabora	79.0	76.1	74.1	174
Rukwa	50.5	47.9	45.7	158
Kigoma	73.8	71.2	65.3	245
Shinyanga	60.9	53.3	40.6	578
Kagera	77.2	76.3	71.0	371
Mwanza	78.6	75.3	63.9	444
Mara	87.3	84.0	75.3	285
Education				
No education	68.7	64.2	56.2	2505
Primary incomplete	85.6	83.5	76.9	1166
Completed primary	89.2	88.3	83.0	2215
Secondary/Higher	98.9	98.9	98.9	152
Total	80.2	77.6	71.1	6038

${ }^{1}$ Includes pill, IUD, injection, vaginal methods (foaming tablets/diaphragm/ foam/jelly), condom, female sterilisation, and male sterilisation.

Knowledge of contraceptive methods varies widely by region (Table 4.2). More than 90 percent of currently married women in Zanzibar, Ruvuma, Lindi, Dar es Salaam, Morogoro, Kilimanjaro, and Dodoma are aware of at least one modern contraceptive method. Knowledge of modem contraceptive methods is low in Rukwa (48 percent), Shinyanga (53 percent), Arusha (65 percent), Iringa (69 percent), and Tanga (70 percent).

The level of education of currently married women is positively associated with knowledge of contraceptive methods and a source where they could be obtained. Knowledge of at least one modern contraceptive method was 64 percent among women with no education, 84 percent among women with incomplete primary education, 88 percent among women who had completed primary education, and 99 percent among women with secondary education or higher. However, only 3 percent of currently married women had secondary education or higher.

4.2 Ever Use of Contraception

All women interviewed in the survey who reported knowing a method of family planning were asked if they had ever used that method. The results are presented in Table 4.3. About 23 percent of all women have ever used a method of family planning, and 14 percent have ever used a modern contraceptive method.

Table 4.3 Ever use of contraception
Percentage of all women and of currently married women who have ever used any contraceptive method, by specific method and age, Tanzania 1991/92

		Modem methods								Traditional methods					Number of women
Age	Any method	$\begin{aligned} & \text { Any } \\ & \text { modern } \\ & \text { meth- } \\ & \text { od } \end{aligned}$	Pill	IUD	$\begin{aligned} & \text { In } \\ & \text { jec- } \\ & \text { tion } \end{aligned}$	Diaphragm foam, jelly	Condorn	Female steri-Lisation	Male steri-lisation	$\begin{aligned} & \text { Any } \\ & \text { trad. } \\ & \text { method } \end{aligned}$	Periodic abstinence	Mucus method	With-drawal	Oher	
ALL WOMEN															
15-19	6.7	2.9	1.3	0.0	0.0	0.1	1.8	0.0	0.0	5.0	3.3	0.3	1.7	0.5	2183
20-24	25.0	13.9	9.3	0.4	0.2	0.2	6.2	0.3	0.0	15.9	9.0	0.8	7.6	1.9	1882
25-29	28.2	17.2	14.9	0.9	0.8	0.1	3.7	0.4	0.1	16.6	7.1	1.9	9.9	2.2	1599
30-34	32.5	20.6	17.5	1.6	1.6	0.3	4.8	1.1	0.0	20.5	10.4	1.8	11.1	3.4	1165
35-39	30.4	22.9	18.7	3.6	1.4	0.7	3.7	4.6	0.1	14.7	6.2	2.0	7.3	3.7	1000
40-44	27.0	19.9	14.9	3.3	1.7	0.7	2.6	5.0	0.1	15.0	5.1	1.0	7.9	4.4	715
45-49	21.4	13.1	8.0	1.9	2.4	0.3	0.8	4.0	0.2	13.0	3.6	0.4	7.8	4.0	695
Total	22.7	14.1	10.8	1.2	0.9	0.3	3.6	1.5	0.0	13.6	6.5	1.1	7.0	2.4	9238
CURRENTLY MARRIED WOMEN															
15-19	10.9	4.1	2.4	0.0	0.0	0.0	2.1	0.0	0.0	7.3	4.0	0.5	3.1	0.8	558
20-24	26.2	15.2	10.6	0.4	0.1	0.2	6.8	0.3	0.0	16.1	7.2	1.0	8.8	2.2	1283
25-29	26.6	15.4	13.2	0.9	0.4	0.2	2.4	0.3	0.1	16.4	5.7	1.9	10.5	2.3	1274
30-34	32.3	19.1	16.1	1.7	1.8	0.2	4.6	1.2	0.0	21.4	11.2	1.9	11.4	3.6	935
35-39	28.3	20.9	16.6	3.0	1.3	0.8	3.5	3.9	0.1	14.2	5.7	1.7	7.6	3.4	841
40-44	26.6	19.8	14.9	3.1	1.9	0.6	2.5	4.9	0.1	15.1	4.9	1.2	7.7	4.2	603
45-49	20.9	12.4	7.6	2.1	2.3	0.1	0.3	3.4	0.2	13.5	4.1	0.5	7.9	4.0	545
Total	25.7	15.8	12.3	1.5	1.0	0.3	3.6	1.6	0.1	15.6	6.5	1.4	8.7	2.8	6038

Among currently married women, 26 percent reported having used family planning methods, and 16 percent have ever used modern family planning methods. Ever use of traditional family planning methods was reported by 14 percent of all women and 16 percent of currently married women. The most commonly used methods of family planning by currently married women were pills (12 percent), withdrawal (9 percent), and periodic abstinence (7 percent). Generally, ever use of modern family planning methods increases with age up to 35-39 years, after which it decreases.

4.3 Current Use of Contraceptives

Table 4.4 presents the distribution of women by family planning method currently used according to age. Only 10 percent of currently married women in Tanzania were using family planning methods at the time of interview. This section focuses primarily on married women, since it is customary to analyse contraceptive use among currently married women.

Table 4.4 Current use of contraception by age
Percent distribution of all women and of currently married women by contraceptive method currently used, according to age, age, Tanzania 1991/92

Age	Modern methods									Traditional methods					Na currenuly using	Total Number	
	Any method	Any modern mehod	Pill	IUD	Injection	Diaphragm, foam, jelly	Condom	Female steri-lisaLion	Male steri- lisa- tion	Any trad. method	Periodic abstinence	Mucus method	With draw- al	Other			
ALI WOMEN																	
15-19	3.4	1.0	0.6	0.0	0.0	0.0	0.4	0.0	0.0	2.4	1.7	0.0	0.5	0.2	3.4	100.0	2183
20-24	9.9	5.7	3.6	0.2	0.1	0.0	1.5	0.3	0.0	4.2	2.1	0.1	1.4	0.5	9.9	100.0	1882
25-29	10.7	5.7	4.6	0.3	0.1	0.0	0.3	0.4	0.0	5.0	2.1	0.2	2.0	0.7	10.7	100.0	1599
30-34	14.9	10.5	7.0	0.4	0.8	0.0	1.1	1.1	0.0	4.4	1.9	0.0	1.9	0.7	14.9	100.0	1165
35-39	14.2	11.1	3.7	1.0	0.5	0.0	1.2	4.6	0.0	3.1	1.0	0.2	1.4	0.5	14.2	100.0	1000
40-44	10.7	7.6	0.9	0.5	0.9	0.1	0.2	5.0	0.0	3.1	0.7	0.0	1.8	0.6	10.7	100.0	715
45-49	7.2	5.4	0.1	0.4	0.6	0.1	0.1	4.0	0.2	1.8	0.8	0.0	0.5	0.5	7.2	100.0	695
Toual	9.5	5.9	3.0	0.3	0.3	0.0	0.7	1.5	0.0	3.6	1.6	0.1	1.3	0.5	9.5	100.0	9238
CURRENTLY MARRIED WOMEN																	
15-19	5.2	1.7	1.4	0.0	0.0	0.0	0.2	0.0	0.0	3.6	1.7	0.0	1.4	0.5	5.2	100.0	558
20-24	10.0	5.9	4.3	0.2	0.0	0.0	1.1	0.3	0.0	4.1	1.3	0.1	2.0	0.6	10.0	100.0	1283
25-29	9.9	5.2	4.1	0.4	0.2	0.0	0.3	0.3	0.0	4.8	1.4	0.3	2.5	0.6	9.9	100.0	1274
30-34	13.8	9.1	5.5	0.4	1.0	0.0	1.1	1.2	0.0	4.7	1.8	0.0	2.3	0.6	13.8	100.0	935
35-39	13.3	10.5	3.8	1.0	0.4	0.0	1.3	3.9	0.0	2.8	0.8	0.0	1.6	0.4	13.3	100.0	841
40-44	10.9	7.5	0.8	0.6	0.9	0.1	0.2	4.9	0.0	3.4	0.6	0.0	2.1	0.7	10.9	100.0	603
45-49	7.1	4.8	0.1	0.5	0.5	0.1	0.1	3.4	0.2	2.3	1.0	0.0	0.6	0.7	7.1	100.0	545
Tota	10.4	6.6	3.4	0.4	0.4	0.0	0.7	1.6	0.0	3.9	1.3	0.1	1.9	0.6	10.4	100.0	6038

Use of modem methods was higher (7 percent) than that of traditional methods (4 percent). Pills were used by 3 percent of currently married women, which is about half of all women using modem methods. Other methods commonly used were withdrawal (2 percent), female sterilization (2 percent), and periodic abstinence (1 percent). Use of family planning methods was lowest among younger women ($15-19$ years) and highest among women between $30-39$ years of age. The tendency to use family planning methods was higher among older women, probably due to the fact that they are more likely to have completed their
families and hence want to stop childbearing. Similar findings were also observed in Nigeria (Federal Office of Statistics, 1992).

To determine the factors associated with current use of family planning methods, use of the methods was assessed by various background characteristics of women, such as urban/rural residence, region, education, and number of living children. The results are presented in Table 4.5 and Figure 4.1.

Table 4.5 Current use of contraception by background characteristics

Percent distribution of currently married women by contraceptive method currenly used, according to selected background characteristics, Tanzania 1991/92

Background characterislic	Any method	Modern methods								Traditional methods					Number of women
		All modern	Pild	IUD	InjecLion	Vaginal methods	Condom	Female steri-lisation	Male steri- ilisa. tion.	$\begin{gathered} \text { Any } \\ \text { trad. } \\ \text { meth- } \\ \text { od } \end{gathered}$	Periodic abstinence	Mucus	With drawal	Other	
Resldence															
Mainland	10.5	6.6	3.4	0.4	0.4	0.0	0.7	1.6	0.0	4.0	1.3	0.1	2.0	0.6	5870
Dar es Salaam	15.7	10.9	5.7	0.5	0.6	0.0	1.9	2.2	0.0	4.8	0.6	0.0	3.5	0.6	349
Other urban	18.7	15.1	9.5	1.3	1.3	0.0	1.4	1.6	0.0	3.6	1.6	0.1	1.1	0.8	966
Rural	8.4	4.4	1.9	0.2	0.1	0.0	0.5	1.6	0.0	4.0	1.3	0.1	2.1	0.6	4555
Zanzibar	7.1	6.6	2.9	0.3	1.1	0.0	0.8	1.5	0.0	0.5	0.5	0.0	0.0	0.0	168
Reglon															
Dodoma	9.6	8.3	4.5	0.0	1.6	0.0	2.2	0.0	0.0	1.3	0.5	0.0	0.6	0.2	445
Arushs	17.3	12.3	7.6	0.8	0.4	0.0	1.1	2.5	0.0	5.0	0.8	0.6	3.3	0.2	350
Kilimanjaro	33.1	25.3	8.5	4.8	0.4	0.3	3.4	7.9	0.0	7.8	1.8	0.3	5.6	0.0	258
Tanga	15.8	7.5	4.9	0.0	0.7	0.0	0.3	1.6	0.0	8.3	1.8	0.0	6.5	0.0	306
Morogoro	10.6	4.5	3.3	0.0	0.0	0.0	1.0	0.2	0.0	6.1	2.0	0.0	2.4	1.8	334
Coast	13.6	3.3	1.8	0.0	0.0	0.4	1.1	0.0	0.0	10.3	0.8	0.0	6.7	2.8	98
Lindi	11.5	9.7	4.9	0.0	1.0	0.0	0.6	3.2	0.0	1.8	0.0	0.0	0.2	1.6	155
Mtwara	2.3	1.5	0.4	0.0	0.4	0.0	0.0	0.7	0.0	0.8	0.0	0.0	0.0	0.8	249
Ruvuma	7.8	5.1	1.3	0.0	0.0	0.0	0.3	3.5	0.0	2.7	0.0	0.4	1.3	1.1	210
Iringa	11.1	9.0	6.7	0.9	0.2	0.0	0.0	0.8	0.3	2.1	1.2	0.0	0.9	0.0	338
Mbeya	12.1	5.4	2.9	0.9	0.0	0.0	0.0	1.6	0.0	6.7	0.8	0.0	5.9	0.0	333
Singida	14.0	10.7	8.4	0.9	0.0	0.0	0.0	1.4	0.0	3.4	1.5	0.0	1.1	0.7	190
Tabora	9.0	4.1	1.0	0.2	0.0	0.0	0.0	2.9	0.0	5.0	1.6	0.4	1.5	1.4	174
Rukwa	5.6	4.4	2.3	0.0	0.0	0.0	0.5	1.7	0.0	1.2	0.9	0.0	0.1	0.1	158
Kigoma	4.9	2.8	1.3	0.0	0.1	0.0	0.9	0.5	0.0	2.1	0.3	0.0	0.5	1.3	245
Shinyanga	4.2	1.2	0.6	0.0	0.0	0.0	0.3	0.3	0.0	3.0	2.4	0.0	0.0	0.6	578
Kagera	8.4	3.9	0.5	0.0	0.3	0.0	0.0	3.2	0.0	4.4	2.8	0.0	1.3	0.3	371
Mwanza	4.0	2.3	1.5	0.0	0.0	0.0	0.0	0.9	0.0	1.6	0.8	0.0	0.3	0.6	444
Mara	7.9	3.0	0.8	0.2	1.1	0.0	0.0	0.9	0.0	4.9	2.9	0.3	1.1	0.6	285
Education															
No education	3.7	1.8	0.6	0.0	0.2	0.0	0.1	0.8	0.0	1.9	0.7	0.0	0.8	0.4	2505
Primary incomplete	12.9	8.2	2.3	0.6	1.0	0.0	0.7	3.6	0.0	4.7	0.7	0.2	2.9	0.9	1166
Completed primary	14.6	9.3	6.1	0.4	0.3	0.0	1.2	1.3	0.0	5.3	1.9	0.1	2.7	0.6	2215
Secondary/Higher	42.4	33.1	17.2	6.6	0.3	0.0	3.9	5.2	0.0	9.3	4.9	0.5	3.0	0.9	152
Number of children															
0	1.8	0.6	0.1	0.0	0.0	0.0	0.0	0.5	0.0	1.2	1.2	0.0	0.0	0.0	619
1	9.8	6.3	4.5	0.0	0.1	0.0	0.7	1.0	0.0	3.5	1.4	0.3	1.4	0.4	1058
2	11.6	6.0	4.2	0.4	0.0	0.0	1.2	0.3	0.0	5.6	1.6	0.1	2.9	1.0	1001
3	11.3	7.7	4.8	1.2	0.1	0.0	0.6	1.0	0.0	3.6	1.2	0.1	1.9	0.5	835
$4+$	12.0	8.0	2.9	0.5	0.8	0.1	0.7	2.9	0.0	4.0	1.1	0.0	2.2	0.7	2525
Toua	10.4	6.6	3.4	0.4	0.4	0.0	0.7	1.6	0.0	3.9	1.3	0.1	1.9	0.6	6038

Figure 4.1
 Current Use of Modern Contraceptives among Currently Married Women 15-49

The proportion of married women using any method of family planning was higher in the Tanzania mainland (11 percent) than in Zanzibar (7 percent). Within the Tanzania mainland, women in rural areas were less likely to use family planning methods than those in urban areas. However, the prevalence of contraceptive use was slightly lower in Dar es Salaam (16 percent) than in other urban areas (19 percent). In both urban and rural areas, the pill was the most used method.

The prevalence of use of family planning methods varied widely by region. Regions with the highest proportion of married women using modem methods were Kilimanjaro (25 percent), Arusha (12 percent), Dar es Salaam (11 percent), and Singida (11 percent). Lowest prevalence of contraceptive use was found in Shinyanga (1 percent), Mtwara (2 percent), Mwanza (2 percent), and Kigoma (3 percent). Overall, pills were the most popular method in most of the regions. Use of traditional methods was relatively high in Coast (10 percent), Tanga (8 percent), Kilimanjaro (8 percent), and Mbeya (7 percent). In general, withdrawal was the most common traditional method used in all regions.

The probability of using family planning methods is associated with level of education. As documented in other countries, a monotonic increase in contraceptive use was found to be associated with increasing level of education. The proportion of married women using any family planning method increased from about 4 percent among women with no formal education to 42 percent among those with secondary education or higher. A similar pattern was observed for both modem and traditional methods. Female sterilisation is the most commonly used method among women with no education and those with incomplete primary education, whereas pills are the most used contraceptive method among women with completed primary education and above.

The association between level of education and use of contraception was further explored by relating the proportion of women who had completed primary school and above and current use of contraceptives by
region; the results are shown in Figure 4.2. These results indicate that there is a strong relationship between contraceptive use and level of education. The level of education explains 63 percent of the variation in use of modern contraceptives between regions. Kilimanjaro region is an outlier, especially because of its high use of modern contraceptives: the level of use is higher than expected on the basis of its level of education. Dar es Salaam, despite having a level of contraceptive use higher than most other regions, has a lower level than expected on the basis of its level of education.

Use of any family planning method was found to increase from about 2 percent among women with no living child to 12 percent among those with at least four living children. Increasing prevalence of modern contraceptive use was also found to be associated with increasing number of living children. Use of specific modern and traditional methods varied little according to the number of living children, except for female sterilization and IUD, which were found to be used mainly by women with at least three living children.

In general, these findings indicate that women more likely to be using family planning methods are those on mainland Tanzania, particularly those in urban areas other than Dar es Salaam, those residing in the Kilimanjaro region, those who have completed secondary education, and those with at least two living children.

4.4 Number of Children at First Use of Contraception

Family planning methods may be used by couples for either limiting family size or spacing births. Family size limiters are likely to start using contraceptives only when they have already had as many children as they want, whereas couples wishing to space their births may start contracepting at a much earlier phase before having many births. In many cultures where acceptance of family planning is not widespread, most couples use contraceptives for limiting family size. As the concept of planning families gains acceptance,
however, couples may begin to use contraception for spacing births as well as for limiting family size. To explore the possible motivation for use of contraceptives, a question was posed on the number of living children ever-married women had when they first used contraception; the results are presented in Table 4.6.

Table 4.6 Number of children at first use of contraception
Percent distribution of ever-married women by number of living children at the time of first use of contraception, according to current age, Tanzania 1991/92

Current age	Never used contraception	Number of living children at time of first use of contraception						Total	Number of women
		0	1	2	3	4+	Missing		
15-19	88.5	6.0	4.7	0.2	0.0	0.0	0.6	100.0	618
20-24	73.6	2.5	17.8	3.7	0.7	0.4	1.3	100.0	1409
25-29	72.3	1.3	12.2	8.3	3.6	1.3	1.0	100.0	1457
30-34	66.9	0.7	10.2	7.1	6.1	7.8	1.3	100.0	1117
35-39	70.7	1.1	6.8	4.7	5.4	10.6	0.7	100.0	976
40-44	73.1	0.8	2.8	3.8	3.7	15.0	0.8	100.0	709
45-49	78.5	0.1	2.6	2.0	3.8	12.0	1.0	100.0	692
Total	73.6	1.7	9.7	4.9	3.4	5.8	1.0	100.0	6977

Overall, only 2 percent of women used contraceptives before they had children. About 37 percent of women who had ever used contraceptives (10 percent of all ever-married women) started using contraceptives when they had one child, suggesting that they were interested in spacing their births. On the other end, about 22 percent of ever users of contraceptives (6 percent of all ever-married women) used contraceptives for the first time when they had at least 4 living children, suggesting that they were interested in limiting family size.

When we take into consideration the age of respondents at interview a very interesting pattern can be observed. Among ever users of contraceptives, over half (52 percent) of women below 20 years of age started using contraceptives before they had any living child, while 67 percent of women between $20-24$ years started using contraceptives when they had only one child. Among women age $40-49$ who reported to have ever used contraceptives, 56 percent had at least 4 living children at the time they started using contraceptives. These results suggests that the major motivation for starting to use contraceptives was prevention of unwanted pregnancies for those below 20 years of age; spacing of births for those between $20-29$ years; and limiting farnily size for those at 40 years and above. Thus, they reflect a possible increasing tendency of using family planning methods for prevention of unwanted pregnancies and child spacing rather than of family size limitation.

4.5 Knowledge of the Fertile Period

The time between two menstrual bleedings is commonly referred to as a menstrual cycle. Women's ability to conceive tends to vary within the menstrual cycle. Generally, women are said to be "fertile" for a brief period of time at mid-cycle, and relatively "infertile" for the rest of the cycle. Knowledge of this fact is obviously imporlant for successful practice of coital-related methods and periodic abstinence or the rhythm
method. To assess this knowledge, women were asked to identify the time within the menstrual cycle when a woman is most likely to conceive. Table 4.7 presents the percent distribution of all women and those who have ever used periodic abstinence by reported knowledge of the fertile period.

Of all women interviewed, 42 percent reported that they did not know when a woman is most likely to conceive, and 20 percent said that a woman is most likely to conceive just after her period has ended. Only 13 percent gave the correct response -- that a woman was most likely to conceive in the middle of her menstrual cycle. Ever users of periodic abstinence were more likely to know the time in the cycle when a woman was expected to conceive. Of 598 women who had ever used periodic abstinence, 31 percent correctly identified the mid-cycle as the fertile period, and only 12 percent said they did not know. In general, knowledge of the fertile period was very low, since more than half of all women and those who have ever used periodic abstinence gave wrong answers or reporting that they did not know when a woman was most likely to conceive.

4.6 Sources for Family Planning Methods

All current users of modern contraceptive methods were asked to report the source from which they most recently obtained their methods. Interviewers were instructed to write the name of the source, which was later verified and coded by the supervisors and field editors.

The reported sources of contraceptive supplies are summarized in Table 4.8. Public (govemment) facilities were reported by the majority (73 percent) of modern contraceptive users as the source of their most recent contraceptive supplies. Eighteen percent reported obtaining contraceptives from private medical facilities, while only 4 percent obtained their supplies from other private outlets such as shops or friends and relatives. The most common sources of methods were dispensaries for public (govemment) sector and religious organisation health facilities and private shops for the private sector.

Several factors may influence a woman to select a certain facility as a source of contraceptive supplies. One of these factors may be the type of method chosen. Table 4.8 shows the most recent source of supply by the method used by current users of modern contraceptive methods. The majority of users of the pill, IUD, and condom and all users of injectables obtained their supplies from public (govemment) facilities. Among 134 women reporting to have been sterilized, half were performed in public (government) facilities, and one-third were done in a private medical facility. The sources of modern contraceptive methods are summarized in Figure 4.3.

Table 4.8 Source of supply for modern contraceptive methods
Percent distribution of current users of modern contraceptive methods by most recent source of supply, according to specific methods, Tanzania 1991/92

Source of supply	Pill	IUD	Injection	Condom	Female sterilisation	Total
Public sector	86.3	(74.6)	(100.0)	54.3	49.4	72.9
Consultant hospital	0.7	(7.0)	(9.2)	2.2	12.3	4.5
Regional hospital	6.6	(21.5)	(10.3)	4.3	10.2	8.2
District hospital	18.8	(7.2)	(38.1)	12.0	25.6	19.9
Heallh centre	21.5	(30.3)	(16.3)	10.1	0.0	14.9
Dispensary	37.4	(8.6)	(21.5)	24.3	0.0	23.9
Parastatal health facility	1.4	(0.0)	(4.7)	0.0	1.4	1.3
Village health pos/Worker	0.0	(0.0)	(0.0)	1.4	0.0	0.2
Medical private sector	9.2	(25.4)	(0.0)	18.0	36.3	17.8
Religious org. facility	6.1	(25.4)	(0.0)	6.4	33.4	14.0
Private doctor/Hospital/Clinic	0.9	(0.0)	(0.0)	4.0	2.8	1.7
Pharmacy/Medical store	2.0	(0.0)	(0.0)	7.5	0.0	2.0
UMATI CBD worker	0.1	(0.0)	(0.0)	0.0	0.0	0.1
Other private sector	2.4	(0.0)	(0.0)	23.1	0.0	4.1
Shop	0.3	(0.0)	(0.0)	21.3	0.0	2.8
Friends, relatives	2.1	(0.0)	(0.0)	1.9	0.0	1.3
Other	0.0	(0.0)	(0.0)	0.5	0.5	0.2
Don't know	0.0	(0.0)	(0.0)	4.1	0.0	0.5
Missing	2.1	(0.0)	(0.0)	0.0	13.8	4.5
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number	279	31	29	69	134	545

UMATI = Family Planning Association of Tanzania

Figure 4.3 Distribution of Current Users by Source of Contraceptive Supply

TDHS 1991/92

Other factors that may influence a woman to select a certain source of supplies is the distance from home to the facility. To assess the distance involved, current users of modem contraceptive methods were asked how long it takes to travel from their home to the place where they obtain the method. Nonusers were asked if they knew a place where they could obtain a modem method and, if so, how long it would take to travel there. The results are shown in Table 4.9.

Table 4.9 Time to source of supply for modern contraceptive methods

Percent distribution of women who are currently using a modern contraceptive method, of women who are not using a modern method, and of women who know a method, by time to reach a source of supply, according to urban/tural residence, Tanzania 1991/92

	Women who are currently using a modern method			Women who are not using a modern method			Women who know a contraceptive method		
to source	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural	Total
$0-14$	16.7	10.4	13.4	10.2	3.8	5.3	12.3	5.4	7.4
15-29	22.5	6.9	14.4	11.4	3.1	5.0	14.4	4.5	7.3
30-59	22.1	14.1	18.0	22.7	8.7	12.0	25.8	12.4	16.3
60 or more	31.2	61.6	47.0	22.3	34.0	31.2	26.3	47.7	41.5
Does not know time	1.4	1.9	1.6	0.5	0.6	0.6	0.6	0.9	0.8
Does not know source	0.7	0.3	0.5	31.8	49.1	45.0	19.0	27.8	25.3
Not stated	5.4	4.8	5.1	1.1	0.7	0.8	1.7	1.2	1.4
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	262	282	545	2032	6661	8693	1991	4885	6876

Among women currently using modem contraceptive methods, 28 percent reported living less than 30 minutes from the source of contraceptives, while 18 percent took 30 minutes to one hour to reach the source of contraceptives. Almost half (47 percent) of current users reported taking one hour or more to reach the source. As expected, women in rural areas were more likely to live farther from their source of contraceptives than their urban counterparts.

Among women who are not currently using modem contraceptive methods, 45 percent did not know a source for contraceptive methods. This finding may be due to the fact that all women were asked this question, including those who do not know any method. However, even among those women who knew a family planning method, 25 percent said they did not know a place to get modem methods. ${ }^{1}$ This suggests that lack of knowledge of a source of contraceptive supply is not necessarily due to not knowing about family planning methods. Among those who knew a source of contraceptives, the time to a source of contraceptives was similar in users and nonusers in urban and rural areas. For instance, the proportion more than 60 minutes away from the source is highest among rural women who use (62 percent), followed by women who know a method (48 percent) and non-users (34 percent). These findings partly suggest that travel time to the source of contraceptive supply may not be an important determinant of contraceptive use in urban and rural areas. However, the large proportion of non-users who do not know a source complicates the picture: these may be women who live far from a source. In that case, travel time is an important determinant of use.

4.7 Intention to use Family Planning Among Nonusers

Currently married women who were not using contraceptive methods at the time of survey were asked if they intended to use family planning methods in future. The results are presented in Table 4.10. Over half of women (56 percent) said they did not intend to use family planning methods in the future, whereas 17 percent were not sure. In general, women with no living children were more likely to report that they do not intend to use family planning methods.

Nineteen percent of nonusers said they were intending to use family planning methods within 12 months, 7 percent said they intended to use after 12 months, and about 2 percent indicated their intention to use contraceptives in the future, although they were not sure of the timing. Thus, the majority of women intending to use family planning methods in the future reported that they were planning to do so within the next 12 months.

[^1]

Women who said they do not intend to use family planning methods were asked to give their reasons for nonuse. Out of the 3025 respondents, 36 percent said they do not intend to use family planning methods in the future because they want children (see Table 4.11). Other reasons given were difficulty in conceiving (12 percent), infecundity (post-menopausal/had hysterectomy) (11 percent), lack of knowledge of methods (9 percent), and opposition to family planning (8 percent). Women below 30 years of age were more likely to report that they do not intend to use contraceptives because they want children, whereas those age 30 years or more were more likely to say that they were infecund or menopausal and therefore no longer at risk of getting pregnant.

Nonusers who indicated their willingness to use family planning methods in the future were asked to mention the method they preferred to use. A majority of these women (53 percent) said they preferred to use pills (see Table 4.12). Other preferred methods were injections (12 percent), female sterilization (9 percent), and IUD (5 percent). Women who intend to use in the next 12 months have similar method preference as women who intend to use after 12 months. However, women who were not sure of the timing of future use were more likely to prefer the withdrawal method.

Table 4.11 Reasons for not using contraception

Percent distribution of women who are not using a contraceptive method and who do not intend to use in the future by main reason for not using, according to age, Tanzania 1991/92

Reason for not using contraception	Age		Total
	<30	$30+$	
Wants children	52.2	23.9	36.4
Lack of knowledge	10.8	7.6	9.0
Partner opposed	4.1	2.4	3.1
Costs too much	0.0	0.1	0.1
Side effects	3.6	3.1	3.4
Health concerns	0.8	1.9	1.4
Hard to get methods	2.5	1.8	2.1
Religion	0.5	0.6	0.5
Opposed to family planning	7.7	7.6	7.7
Fatalistic	3.8	6.2	5.2
Other people opposed	0.1	0.2	0.1
Infrequent sex	1.3	2.1	1.8
Difficult to be pregnant	4.7	17.8	12.0
Menopausal, had hysterectomy	0.0	20.2	11.3
Inconvenient	1.1	1.3	1.2
Not married	0.4	0.4	0.4
Other	0.6	0.7	0.7
Don't know	5.5	2.0	3.5
Missing	0.1	0.1	0.1
Total	100.0	100.0	100.0
Number	1331	1694	3025

Table 4.12 Preferred method of contraception for future use
Percent distribution of currently married women who are not using a contraceptive method but who intend to use in the future by preferred method, according to whether they intend to use in the next 12 months or later, Tanzania 1991/92

Preferred method of contraception	Intend to use			Total ${ }^{1}$
	$\begin{aligned} & \hline \text { In next } \\ & 12 \\ & \text { months } \end{aligned}$	After 12 months	Unsure as to timing	
Pill	53.1	54.3	54.5	53.4
IUD	5.6	3.3	0.0	4.7
Injection	13.7	10.2	3.6	12.2
Diaphragm/Foam/Jelly	1.0	2.1	0.0	1.2
Condom	1.5	1.2	0.0	1.4
Female sterilisation	8.9	7.0	9.6	8.5
Male sterilisation	0.2	0.4	0.0	0.3
Periodic abstinence	3.5	4.0	5.8	3.8
Mucus method	0.2	0.3	0.0	0.2
Withdrawal	1.6	2.0	12.5	2.4
Other	3.4	5.6	6.2	4.1
Missing	7.3	9.4	7.8	8.0
Total	100.0	100.0	100.0	100.0
Number	1026	359	88	1475

[^2]
4.8 Approval of Family Planning

Radio and television are the major potential sources of information about family planning. To assess the effectiveness of such messages, all respondents were asked if they had heard a message about family planning on radio or television in the month preceding the survey. A large majority of respondents (76 percent) said they had not heard any message, whereas only 23 percent reported that they did (see Table 4.13). Women in Zanzibar were more likely to have heard family planning messages on radio and television than their counterparts on the mainland. It should be noted that although the question was asked for both radio and television for the mainland, radio is the only source of information, since no public television system is in place there. This may account for the differences observed between Zanzibar and the Tanzania mainland.

Table 4.13 Family planning messages on radio and television
Percent distribution of all women by whether they have heard a family planning message on radio or on television in the month preceding the survey, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Heard family planning message on radio or on television				Missing	Total	Number
	Neither	Radio only	Television only	Both			
Residence							
Mainland	77.5	21.5	0.3	0.3	0.4	100.0	8978
Dar es Salaam	43.8	53.1	0.9	2.2	0.0	100.0	585
Other urban	62.4	36.8	0.4	0.4	0.0	100.0	1686
Rural	84.2	14.9	0.3	0.2	0.5	100.0	6707
Zanzibar	33.0	55.4	0.4	11.0	0.2	100.0	260
Region							
Dodoma	84.7	14.5	0.5	0.0	0.3	100.0	649
Arusha	63.9	35.7	0.0	0.3	0.1	100.0	573
Kilimanjaro	73.0	26.5	0.4	0.2	0.0	100.0	516
Tanga	86.2	12.5	0.0	0.4	0.9	100.0	471
Morogoro	76.7	22.6	0.5	0.1	0.1	100.0	512
Coast	65.4	32.9	1.0	0.8	0.0	100.0	159
Lindi	86.3	13.7	0.0	0.0	0.0	100.0	217
Mtwara	93.3	6.7	0.0	0.0	0.0	100.0	363
Ruvuma	91.2	8.6	0.2	0.0	0.0	100.0	320
Iringa	77.9	19.6	0.0	0.3	2.3	100.0	475
Mbeya	79.9	19.4	0.0	0.2	0.4	100.0	449
Singida	80.3	19.2	0.5	0.0	0.0	100.0	355
Tabora	83.8	15.5	0.2	0.2	0.3	100.0	271
Rukwa	78.3	21.1	0.2	0.2	0.2	100.0	217
Kigoma	74.6	25.3	0.0	0.2	0.0	100.0	375
Shinyanga	88.5	10.8	0.0	0.0	0.7	100.0	793
Kagera	78.0	19.0	1.4	0.9	0.7	100.0	608
Mwanza	77.0	22.1	0.5	0.2	0.2	100.0	666
Mara	75.6	24.0	0.0	0.3	0.1	100.0	403
Education							
No education	86.7	12.2	0.2	0.2	0.6	100.0	3128
Primary incomplete	77.8	21.3	0.1	0.4	0.4	100.0	1825
Completed primary	70.3	28.5	0.4	0.6	0.2	100.0	3841
Secondary/Higher	46.4	46.6	1.7	5.0	0.2	100.0	444
Total	76.2	22.4	0.3	0.6	0.4	100.0	9238

On the Tanzania mainland, radio messages on family planning were more likely to have been heard by women in urban areas than those in rural areas and the proportion varied widely across regions. Over half of respondents in Zanzibar (67 percent) and Dar es Salaam (56 percent) have heard family planning messages
on radio compared to less than 12 percent of respondents in Mtwara, Ruvuma, and Shinyanga. More educated women were also more likely to have heard a family planning message on radio or television than their less educated counterparts.

Women were asked whether they thought it was acceptable or not acceptable for family planning information to be provided on radio or television. Overall, a majority of women interviewed (71 percent) reported that it was acceptable to use radio or television for family planning information (Table 4.14).

messages					
Percentage of women who believe that it is acceptable to have messages about family planning on radio or television, by selected background characteristics, Tanzania 1991/92					
Background characteristic	Acceptable	Not acceptable	Missing	Total	Number
Age					
15-19	57.9	13.5	28.7	100.0	2183
20-24	79.4	10.2	10.4	100.0	1882
25-29	77.4	11.2	11.3	100.0	1599
30-34	79.7	11.2	9.1	100.0	1165
35-39	68.9	17.7	13.4	100.0	1000
40-44	67.7	16.7	15.7	100.0	715
45-49	60.4	15.4	24.2	100.0	695
Residence					
Mainland	70.5	12.7	16.8	100.0	8978
Dar es Salaam	79.4	15.9	4.7	100.0	585
Other urban	82.1	8.4	9.5	100.0	1686
Rural	66.8	13.4	19.7	100.0	6707
Zanzibar	71.2	24.3	4.6	100.0	260
Region					
Dodorna	73.7	13.8	12.5	100.0	649
Arusha	77.3	11.1	11.6	100.0	573
Kilimanjaro	84.6	4.6	10.8	100.0	516
Tanga	78.5	6.8	14.7	100.0	471
Morogoro	73.8	13.4	12.9	100.0	512
Coast	61.7	28.2	10.0	100.0	159
Lindi	74.2	14.1	11.7	100.0	217
Mtwara	56.4	13.8	29.8	100.0	363
Ruvuma	69.4	15.6	15.0	100.0	320
Iringa	55.8	15.4	28.8	100.0	475
Mbeya	62.7	7.9	29.4	100.0	449
Singida	69.7	10.8	19.5	100.0	355
Tabora	75.1	9.4	15.5	100.0	271
Rukwa	51.9	11.3	36.8	100.0	217
Kigoma	68.3	15.0	16.7	100.0	375
Shinyanga	66.6	10.2	23.3	100.0	793
Kagera	71.5	15.7	12.8	100.0	608
Mwanza	69.3	13.4	17.2	100.0	666
Mara	70.1	17.9	12.0	100.0	403
Education					
No education	57.0	19.3	23.6	100.0	3128
Some primary	70.8	11.6	17.6	100.0	1825
Completed primary	79.3	9.3	11.4	100.0	3841
Secondary/figher	88.5	5.7	5.7	100.0	444
Total	70.5	13.0	16.5	100.0	9238

Acceptability of radio and television as a source of information was relatively low among women below 20 years and above 44 years, while the proportion of women reporting these channels to be unacceptable was relatively higher among women above 34 years of age. Women in Zanzibar were twice as likely as their counterparts in Tanzania mainland to say that radio and television were unacceptable media for family planning information. Within the Tanzania mainland, women in Dar es Salaam and rural areas were more likely to report that radio and television were unacceptable than women in other urban areas.

Acceptability of radio and television for dissemination of family planning messages varied across regions. Less than 10 percent of women in Kilimanjaro, Tanga, Mbeya, and Tabora reported that radio and television were unacceptable for dissemination of family planning messages, compared to more than twenty percent of women in Coast and Zanzibar. More educated women were much more likely to accept family planning messages on radio or television than less educated women.

To assess the acceptability of family planning among married women who know family planning methods, the TDHS included a question about the extent to which couples discuss the topic with each other. Table 4.15 indicates that 56 percent of respondents had not discussed family planning with their husbands during the previous year. Among those who have discussed family planning with their husbands, most had discussed the topic only once or twice. Women below 20 years of age and those above 39 years of age were more likely not to have discussed family planning with their husbands than their counterparts age 20-39 years.

Table 4.15 Discussion of family planning by couples
Percent distribution of currently married women who know a contraceptive method by the number of times family planning was discussed with husband in the year preceding the survey, according to current age, Tanzania 1991/92

Age	Number of times family planning discussed					Number of women
	Never	Once or twice	Three or more times	Don't know/ Missing	Total	
15-19	66.1	26.2	7.3	0.3	100.0	396
20-24	51.1	29.3	19.4	0.2	100.0	1040
25-29	52.9	28.2	18.6	0.3	100.0	1073
30-34	49.0	29.0	21.8	0.2	100.0	788
35-39	58.1	19.9	21.2	0.8	100.0	637
40-44	61.3	22.5	16.1	0.0	100.0	453
45-49	72.9	13.4	13.2	0.5	100.0	358
Total	56.0	25.6	18.1	0.3	100.0	4746

To obtain more direct information about the acceptability of family planning, respondents were asked if they approved or disapproved of couples using family planning methods. Although all women were asked this question, the data presented here are restricted to currently married women and exclude those women who had never heard of a contraceptive method. Currently married women were also asked if they thought that their husbands approved of the use of family planning. The results are shown in Table 4.16.

Table 4.16 Attitudes of couples toward family planning

Among currently married non-sterilised women who know a contraceptive method, the percentage who approve of family planning, by their perception of their husband's attitude and selected background characteristics, Tanzania 1991/92

Background characteristic	Both approve	Respondent approves		Respondent disapproves		Both disapprove	Missing	Total	Number of women
		Husband disapproves	$\begin{aligned} & \text { Unsure } \\ & \text { of } \\ & \text { husband } \end{aligned}$	Husband approves					
Age									
15-19	35.5	15.2	30.9	0.7	6.4	10.7	0.5	100.0	396
20-24	50.0	11.6	25.7	1.2	4.9	6.2	0.4	100.0	1040
25-29	45.1	19.0	21.2	1.7	6.1	6.8	0.1	100.0	1073
30-34	46.2	18.6	21.7	1.4	5.3	6.6	0.1	100.0	788
35-39	42.2	17.8	21.4	1.4	7.6	8.8	0.8	100.0	637
40-44	37.0	21.0	23.6	1.2	9.5	7.7	0.0	100.0	453
45-49	34.3	16.2	29.9	1.1	9.9	7.8	0.8	100.0	358
Residence									
Mainland	44.2	16.2	24.5	1.3	6.4	7.0	0.4	100.0	4587
Dat es Salaam	60.1	13.5	17.2	1.5	1.7	6.0	0.0	100.0	313
Other urban	59.1	18.6	14.3	0.9	2.9	4.1	0.1	100.0	895
Rural	38.8	15.9	27.8	1.4	7.8	7.8	0.4	100.0	3379
Zanzibar	26.1	32.8	11.1	1.7	9.7	18.4	0.3	100.0	159
Region									
Dodoma	43.5	19.6	23.9	0.0	9.1	3.8	0.2	100.0	422
Arusha	56.8	18.8	11.3	1.8	5.3	6.0	0.0	100.0	237
Kilimanjaro	73.5	12.1	13.0	0.0	0.4	1.0	0.0	100.0	223
Tanga	56.4	17.5	22.4	0.0	3.2	0.5	0.0	100.0	213
Morogoro	49.9	18.9	16.6	1.0	4.3	8.4	0.9	100.0	312
Coast	39.6	20.2	15.3	3.3	8.2	12.9	0.5	100.0	89
Lindi	34.7	17.4	21.0	3.5	6.2	16.4	0.8	100.0	141
Mtwara	21.8	9.0	38.8	3.7	12.4	13.3	1.0	100.0	202
Ruvuma	30.5	23.5	24.7	1.3	7.7	12.2	0.2	100.0	187
Iringa	43.3	20.4	14.2	4.4	4.8	11.8	1.1	100.0	233
Mbeya	43.5	16.1	31.2	1.1	4.1	4.0	0.0	100.0	247
Singida	46.3	17.4	29.9	0.5	2.8	3.2	0.0	100.0	162
Tabora	36.8	11.2	39.5	0.4	7.8	4.0	0.3	100.0	132
Rukwa	49.8	10.4	26.0	0.3	6.9	5.2	1.4	100.0	77
Kigoma	54.5	9.8	20.7	1.2	9.6	4.2	0.0	100.0	179
Shinyanga	23.4	10.9	46.5	2.0	10.5	6.6	0.0	100.0	350
Kagera	52.9	8.1	20.8	0.4	8.3	8.6	0.9	100.0	274
Mwanza	28.1	20.9	33.6	0.2	9.6	7.5	0.0	100.0	345
Mara	41.4	24.1	16.5	2.0	4.5	10.5	0.9	100.0	246
Education									
No education	27.4	18.3	29.7	1.6	11.3	11.2	0.4	100.0	1699
Primary incomplete	41.8	21.9	21.1	0.9	5.6	8.1	0.5	100.0	956
Completed primary	56.1	13.4	21.6	1.3	3.2	4.1	0.2	100.0	1948
Secondary/Higher	76.7	11.1	7.5	0.3	2.0	2.4	0.0	100.0	142
Total	43.6	16.8	24.0	1.3	6.6	7.4	0.3	100.0	4746

Overall, 84 percent of married women who know of a method approve of couples using family planning methods. Half of these women (44 percent) reported that their husbands also approved of family planning. However, about 17 percent of women said that they approve of family planning but their husbands do not. Seven percent of the respondents said that both they and their husbands disapproved of family planning. Only 1 percent of respondents reported that they disapproved of family planning, but their husbands approved. Women in Zanzibar were more likely than women in the mainland to disapprove of family planning methods, as were their spouses. Husbands of respondents approving family planning methods in Zanzibar were more likely to disapprove family planning than those in other parts of Tanzania. Approval of family planning methods by both respondents and husbands was found to increase with increasing women's education, while disapproval of family planning methods was found to decrease with increasing education. These findings underscore the importance of education in changing women's attitudes towards use of family planning methods.

CHAPTER 5

PROXIMATE DETERMINANTS OF FERTILITY

This chapter concerns the principal factors other than contraception that affect a woman's risk of becoming pregnant, namely nuptiality and sexual intercourse, postpartum amenorrhoea and abstinence from sexual relations, and secondary infertility.

Marriage is the primary indicator of exposure of women to the risk of pregnancy and therefore is important for the understanding of fertility. Populations in which age at marriage is low tend to experience early childbearing and subsequently high fertility. This situation necessitates an examination of trends in age at marriage.

This chapter also includes more direct measures of the beginning of exposure to pregnancy and the level of exposure: age at first sexual intercourse and the frequency of intercourse. Measures of other proximate determinants of fertility are the durations of postpartum amenorrhoea and postpartum abstinence and the level of secondary fertility.

5.1 Marital Status

The demographic significance of marriage patterns derives from the fact that formal or informal unions are primary indicators of exposure to the risk of pregnancy. Current marital status of eligible women at the time of the survey is shown in Table 5.1. Here, "marriage" refers to civil, religious, or traditional marriage, as well as "living together." Divorced (including separated) and widowed make up the remainder of the "ever married" category.

Table 5.1 Current marital status by age
Percent distribution of women by current marital status, according to age, Tanzania 1991/92

Age	Marital status						Number of women
	Never married	Married	Living together	Widowed	Divorced	Total	
15-19	71.8	21.2	4.3	0.2	2.6	100.0	2180
20-24	25.1	55.9	12.2	0.7	6.0	100.0	1880
25-29	8.9	58.0	21.6	1.8	9.7	100.0	1597
30-34	4.1	55.7	24.6	4.2	11.4	100.0	1165
35-39	2.4	55.7	28.4	5.0	8.5	100.0	1000
40-44	0.9	53.8	30.5	6.8	8.1	100.0	714
45-49	0.4	49.4	29.0	10.4	10.7	100.0	695
Total	24.5	47.4	18.0	2.9	7.3	100.0	9233

About 65 percent of the eligible women are currently married. This is virtually the same proportion as observed in the 1988 population census (66 percent currently married). As expected, most of the single (never married) women are in the young age groups, that is below 25 years.

5.2 Polygyny

According to Table 5.2, polygyny is fairly common in Tanzania: slightly more than one in four currently married women said their husbands had other wives (28 percent). Twenty-nine percent of rural currently married women have co-wives compared to 12 percent in Dar es Salaam. Polygynous unions exist in all the regions and among women of different education. Mara and Shinyanga regions have the highest percentages of married women in polygynous union, and Kilimanjaro and Dar es Salaam the smallest. More than one-third of women with no education are in polygynous unions compared to 14 percent of those with secondary or higher education.

Table 5.2 Polygyny
Percentage of currently married women in a polygynous union, by age and selected background characteristics, Tanzania 1991/92

Background characteristic	Age of woman							$\begin{aligned} & \text { All } \\ & \text { ages } \end{aligned}$
	15-19	20-24	25-29	30-34	35-39	40-44	45-49	
Residence								
Mainland	16.6	18.0	27.2	30.7	33.8	36.1	37.2	27.5
Dar es Salaam	(0.0)	6.2	13.3	(11.2)	(23.3)	(23.2)	*	12.4
Other urban	6.5	15.6	21.9	28.9	31.0	37.6	35.8	24.1
Rural	20.4	19.6	29.4	32.7	35.1	36.7	38.0	29.4
Zanzibar	(19.9)	16.3	25.6	(25.8)	(31.9)	(36.6)	(27.8)	25.2
Region								
Dodoma	*	(15.5)	(15.4)	(13.0)	(16.5)	*	*	18.8
Arusha	*	19.4	27.8	(33.3)	(33.0)	(42.1)	*	31.1
Kilimanjaro	*	(2.1)	(10.6)	(10.9)	(17.0)	(29.4)	(6.1)	12.2
Tanga	*	13.6	(18.1)	(42.6)	(34.4)	(33.2)	(48.4)	28.5
Morogoro	(4.8)	12.5	21.3	(27.5)	31.9	(27.4)	(34.3)	22.5
Coast	(12.8)	12.0	23.6	32.1	31.0	*	(20.4)	22.3
Lindi	(6.6)	(15.0)	(8.7)	(33.8)	(49.1)	(65.1)	(49.6)	33.1
Mtwara	(14.5)	(15.0)	(15.6)	(21.2)	(42.2)	(42.4)	(38.5)	26.5
Ruvuma	(26.6)	14.5	34.6	(27.4)	(35.6)	(31.4)	(42.0)	29.8
Iringa	*	17.7	38.0	37.3	(53.8)	(36.4)	(34.3)	34.8
Mbeya	*	11.8	(26.5)	(45.1)	(31.1)	(45.7)	*	26.6
Singida	*	16.3	(29.8)	(36.0)	(42.4)	${ }^{*}$	${ }^{*}$	28.2
Tabora	(14.2)	(22.5)	32.1	(18.1)	(35.5)	(22.5)	(26.9)	25.2
Rukwa	(14.6)	15.2	33.8	21.9	(31.7)	(28.0)	*	23.3
Kigoma	(8.9)	11.6	25.0	34.0	(36.4)	(69.1)	(47.1)	30.2
Shinyanga	22.2	35.9	41.0	44.9	36.7	(36.8)	(51.9)	38.0
Kagera	(8.7)	19.2	19.0	(12.4)	(29.1)	(25.0)	(26.1)	19.7
Mwanza	12.1	22.0	33.5	42.8	(37.0)	(36.4)	(45.4)	31.2
Mara	42.2	29.8	52.4	52.9	56.9	(62.2)	*	48.9
Education								
No education	20.0	27.4	36.4	36.3	34.7	40.8	39.8	35.4
Some primary	18.3	22.3	25.7	27.2	33.4	31.7	29.9	27.5
Completed primary	14.8	14.4	23.3	24.3	31.0	24.4	24.1	19.4
Some secondary	*	(8.0)	(4.1)	(25.4)	*	*	*	14.2
Total	16.7	17.9	27.1	30.6	33.8	36.2	37.0	27.5

Note: Rates shown in parentheses are based on $25-49$ women, whereas an asterisk means the rate is based on fewer than 25 women and has been suppressed.

Table 5.3 shows that 73 percent of currently married women have no other co-wives while 16 percent have one co-wife, and 11 percent have two or more co-wives. Mara, Kigoma, and Zanzibar have the highest proportion of currently married women with more than one co-wife. Not only is polygyny more common among less educated women, but the propensity for those in polygynous unions to have more than one cowife is more common among less educated women.

Percent distribution of currently married women by number of co-wives, according to selected background characteristics, Tanzania 1991/92						
Background characteristic	Number of co-wives			Missing	Total	Number of women
	0	1	$2+$			
Age						
15-19	83.3	11.0	5.5	0.2	100.0	558
20-24	82.1	10.6	6.3	1.0	100.0	1283
25-29	72.9	17.6	9.0	0.5	100.0	1274
30-34	69.4	18.0	11.7	0.9	100.0	935
35-39	66.2	17.2	15.9	0.6	100.0	841
40-44	63.8	19.7	16.2	0.3	100.0	603
45-49	63.0	19.9	16.5	0.5	100.0	545
Residence						
Mainland	72.5	16.2	10.8	0.6	100.0	5870
Dar es Salaam	87.6	7.5	4.9	0.0	100.0	349
Other urban	75.9	15.9	7.3	0.8	100.0	966
Rural	70.6	16.9	11.9	0.6	100.0	4555
Zanzibar	74.8	7.8	16.0	1.4	100.0	168
Region						
Dodoma	81.2	15.6	3.2	0.0	100.0	445
Arusha	68.9	16.2	14.0	0.9	100.0	350
Kilimanjaro	87.8	9.1	2.8	0.4	100.0	258
Tanga	71.5	15.5	12.2	0.8	100.0	306
Morogoro	77.5	15.4	7.0	0.1	100.0	334
Coast	77.7	13.2	9.2	0.0	100.0	98
Lindi	66.9	23.1	10.0	0.0	100.0	155
Mtwara	73.5	18.4	8.1	0.0	100.0	249
Ruvuma	70.2	18.2	11.6	0.0	100.0	210
lringa	65.2	17.5	14.1	3.2	100.0	338
Mbeya	73.4	13.3	11.4	1.8	100.0	333
Singida	71.8	18.7	9.2	0.3	100.0	190
Tabora	74.8	15.5	8.7	0.9	100.0	174
Rukwa	76.7	12.2	10.5	0.6	100.0	158
Kigoma	69.8	13.2	16.3	0.6	100.0	245
Shinyanga	62.0	26.7	10.7	0.7	100.0	578
Kagera	80.3	6.9	12.1	0.6	100.0	371
Mwanza	68.8	18.4	12.8	0.0	100.0	444
Mara	51.1	22.2	26.5	0.3	100.0	285
Education						
No education	64.6	19.1	15.7	0.6	100.0	2505
Primary incomplete	72.5	16.7	10.3	0.5	100.0	1166
Completed primary	80.6	12.5	6.2	0.7	100.0	2215
Secondary/Higher	85.8	9.0	4.8	0.4	100.0	152
Total	72.5	16.0	10.9	0.6	100.0	6038

5.3 Age at First Marriage

According to the 1971 Marriage Act, the minimum legal age for a woman to get married is 18 years. The TDHS results show that the median age at first marriage is about 18 years (see Table 5.4). Age at marriage appears to be rising from about 17 years among women in their fourties, to 19 years among women in their twenties. Among women age 20-49, 15 percent were married by age 15 , almost half by age 18 and two-thirds by age 20 .

Table 5.4 Age at first marriage

Percentage of women who were first married by exact age $15,18,20,22$, and 25 , and median age at first marriage, according to current age, Tanzania 1991/92

	Percentage of women who were first married by exact age:							
Current age	15	18	20	22	25	Percentage who had never married	Number of women	Median age at first marriage
$15-19$	3.7	NA	NA	NA	NA	71.7	2183	a
$20-24$	7.2	36.6	61.0	NA	NA	25.1	1882	19.0
$25-29$	10.9	39.7	59.1	74.0	85.9	8.9	1599	19.0
$30-34$	19.2	53.2	69.5	80.2	88.9	4.1	1165	17.7
$35-39$	19.0	55.0	74.3	83.7	91.3	2.4	1000	17.5
$40-44$	23.7	58.9	76.2	84.3	92.5	0.9	715	17.2
$45-49$	27.2	59.4	76.1	86.8	94.3	0.4	695	17.2
$20-49$	15.4	47.2	66.9	78.1	85.7	9.9	7055	18.3
$25-49$	18.3	51.0	69.0	80.4	89.7	4.3	5174	17.9

NA = Not applicable
${ }^{\text {a }}$ Omitted because less than 50 percent of the women in the age group x to $x+4$ were first married by age x

Table 5.5 shows that Zanzibar has a lower median age at first marriage (16 years) than that observed on the Mainland (18 years). Rural women are married slightly earlier than urban women. Differences by education are more pronounced. Women with secondary or higher education have the highest median age at first marriage (23 years), compared to women with completed primary education (20 years), and incomplete primary education and no education (17 years).

Table 5.5 Median age at first marriage
Median age at first marriage among women age 20-49 years, by current age and selected background characteristics, Tanzania 1991/92

Background characteristic	Current age						Women age 20-49	$\begin{gathered} \text { Women } \\ \text { age } \\ 25-49 \end{gathered}$
	20-24	25-29	30-34	35-39	40-44	45-49		
Residence								
Mainland	19.1	19.0	17.7	17.6	17.2	17.2	18.3	18.0
Dar es Salaam	19.6	19.5	17.6	17.8	16.8	15.8	18.9	18.3
Other urban	a	20.2	17.4	18.0	17.5	18.2	19.0	18.4
Rural	18.7	18.7	17.8	17.5	17.1	17.1	18.1	17.8
Zanzibar	18.3	17.4	16.5	15.3	15.8	15.8	16.8	16.4
Education								
No education	17.0	16.7	16.6	16.9	16.5	16.7	16.7	16.7
Primary incomplete	17.8	18.1	16.5	17.1	17.4	17.9	17.5	17.4
Completed primary	19.4	20.1	19.5	19.6	19.9	18.3	19.6	19.9
Secondary/Higher	a	(23.0)	(23.5)	*	*	*	a	23.0
Total	19.0	19.0	17.7	17.5	17.2	17.2	18.3	17.9

Note: Medians are not shown for women 15-19 because less than 50 percent have married by age 15 in all subgroups shown in the table. Rates shown in parentheses are based on 25-49 women, whereas an asterisk mears the rate is based on fewer than 25 women and has been suppressed.
${ }^{\text {a }}$ Omitted because less than 50 percent of the women in the age group were first married by age 20.

5.4 Age at First Intercourse

Though age at first marriage is widely used as a proxy for exposure to sexual intercourse, this is not useful in Tanzania because many women engage in sexual activities before they are married. As Table 5.6 shows, the median age at first intercourse (16.8 years) is one and a half years lower than the median age at first marriage (18.3 years, Table 5.5). By age 15, 23 percent of women had had sexual intercourse and by age 18, the legal age at marriage, 65 percent of women had had sexual intercourse, whereas only half had married by this age. By age 20, 83 percent of women had had sexual intercourse but only 67 percent were married. Table 5.6 also shows that there is a moderate increase of the age at first sexual intercourse from 16.4 years among women $30-49$ years to 17.3 years among women $20-24$ years.

Table 5.6 Age at first sexual intercourse

Percentage of women who had first sexual intercourse by exact age $15,18,20,22$, and 25 , and median age at first intercourse, according to current age, Tanzania 1991/92

Current age	Percentage of women who had first intercourse by exact age:					Percentage who never had intercourse	Number of women	Median age at first intercourse
	15	18	20	22	25			
15-19	11.2	NA	NA	NA	NA	48.7	2183	a
20-24	16.6	60.1	82.6	NA	NA	8.4	1882	17.3
25-29	19.3	59.8	79.5	89.4	94.7	1.5	1599	17.2
30-34	28.1	68.5	82.5	90.8	94.9	1.2	1165	16.4
35-39	25.5	70.0	86.3	93.2	96.6	0.4	1000	16.4
40-44	27.3	71.1	86.0	92.2	96.1	0.2	715	16.3
45-49	30.6	67.1	81.0	91.8	95.4	0.0	695	16.4
20-49	22.8	64.6	82.6	90.8	94.2	2.9	7055	16.8
25-49	25.1	66.3	82.6	91.1	95.4	0.8	5174	16.6

NA $=$ Not applicable
${ }^{\text {a }}$ Omitted because less than 50 percent of the women in the age group x to $x+4$ had had intercourse by age x

Overall, women become sexually active at almost the same age regardless of the geographical area, though with minor differences (Table 5.7). However, the relationship between education and sexual activity is quite strong. The median age at first sexual intercourse among women with secondary or higher education is 20 years, 18 years among women who have completed primary education, and about 16 years for women with incomplete primary education or no education.

5.5 Recent Sexual Activity

In a situation where contraception is not practiced, the probability of pregnancy is closely related to the frequency of sexual intercourse. Therefore, such information is very useful as a measure of exposure to pregnancy. Table 5.6 shows that all but 3 percent of women 20-49 in the TDHS had sexual intercourse. However, not all women who ever had sexual intercourse are currently sexually active.

Table 5.7 Median age at first intercourse
Median age at first sexual intercourse among women age $20-49$ years, by current age and selected background characteristics, Tanzania 1991/92

Background characteristic	Current age						Women age 20-49	Women age 25-49
	20-24	25-29	30-34	35-39	40-44	45-49		
Residence								
Mainland	17.3	17.2	16.4	16.4	16.3	16.4	16.8	16.6
Dar es Salaam	17.8	17.7	16.9	(16.7)	(16.4)	(15.8)	17.2	16.8
Other urban	17.8	17.9	16.2	16.3	16.5	16.7	17.0	16.7
Rural	17.0	17.0	16.5	16.4	16.2	16.4	16.7	16.6
Zanzibar	18.3	17.3	16.6	(15.3)	(15.8)	(16.0)	16.8	16.4
Education								
No education	16.1	15.6	15.7	15.9	15.9	16.2	15.9	15.8
Primary incomplete	16.3	16.3	15.8	16.3	16.4	17.0	16.3	16.3
Completed primary	17.6	18.1	17.6	18.1	18.4	17.8	17.8	18.0
Secondary/Higher	a	20.5	20.4	*	*	*	a	20.4
Total	17.3	17.2	16.4	16.4	16.3	16.4	16.8	16.6

Note: Medians were not shown for women 15-19 because less than 50 percent had had intercourse by age 15 in all subgroups shown in the table. Rates shown in parentheses are based on $25-49$ women, whereas an asterisk means the rate is based on fewer than 25 women and has been suppressed.

Table 5.8 shows the percent distribution of women who have ever had sexual intercourse by sexual activity in the four weeks prior to the survey and duration of abstinence by whether or not postpartum. Women are considered to be sexually active if they had sexual intercourse at least once in the four weeks prior to the survey. Women who are not sexually active may be abstaining for various reasons, such as having given birth. Overall, 61 percent of women were sexually active during the 4 weeks period before the survey, 18 percent were postpartum abstaining, and 21 percent were abstaining for reasons other than having recently given birth.

The proportion of sexually active women varies very little by age of the woman. Women who have ever had sexual intercourse but have never been in union are also sexually active (43 percent), but less so than ever-married women. Twenty-two percent of single women who ever had sexual intercourse were postpartum abstaining and 35 percent were abstaining for other reasons. There appears to be no appreciable decline in the proportion of women sexually active according to duration since first marriage, except among those married for 25 years or more. Regional data show that sexual activity was highest in Mwanza, Zanzibar and Shinyanga (over 70 percent had intercourse in the last 4 weeks), and lowest in lringa and Ruvuma (below 50 percent). The latter two regions had the highest proportion of women in the period of postpartum abstinence. The proportion sexually active decreases slightly with increasing levels of education. Women with secondary or higher education had markedly higher levels of abstinence for reasons other than giving birth. This may be due to the fact that the better educated women are more likely to be younger and single.

As expected, women who are using a family planning method are more likely to be sexually active than those who are not using any method. Among users of a family planning method, the proportion of women sexually active varies according to the method used: the highest level of sexual activity was found among users of the pill.

Table 5.8 Recent sexual activity
Percent distribution of women who have ever had sexual intercourse by sexual activity in the four weeks preceding the survey and the duration of abstinence by whether or not postpartum, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Sexually active in last 4 weeks	Not sexually active in last 4 weeks				Missing	Total	Number of women
		Abstaining (postpartum)		Abstaining (not postpartum)				
		0-1 years	$2+$ years	0-1 years	$2+$ years			
Age of mother								
15-19	57.8	18.1	0.9	21.7	1.5	0.0	100.0	1121
20-24	59.9	19.9	1.8	17.1	1.2	0.1	100.0	1724
25-29	61.2	20.8	2.5	14.3	1.1	0.1	100.0	1576
30-34	63.8	16.4	2.2	15.8	1.8	0.1	100.0	1151
35-39	63.3	13.6	2.7	18.2	2.0	0.3	100.0	997
40-44	64.7	8.3	1.6	18.6	6.6	0.1	100.0	714
45-49	56.8	3.7	2.2	22.2	14.5	0.6	100.0	695
Duration of union								
0-4	64.6	20.5	0.7	13.8	0.4	0.0	100.0	1752
5-9	63.9	19.9	1.5	14.1	0.5	0.0	100.0	1409
10-14	65.0	18.4	1.3	14.4	0.9	0.0	100.0	986
15-19	62.5	13.7	2.6	18.7	2.3	0.1	100.0	975
20-24	65.4	12.5	2.1	16.2	3.0	0.8	100.0	809
25+	60.0	5.7	1.9	20.2	12.1	0.2	100.0	1047
Never in union	42.8	16.8	4.9	30.5	4.7	0.2	100.0	1000
Rcsidence								
Mainland	60.7	16.3	2.0	17.7	3.1	0.1	100.0	7776
Dar es Salaam	69.3	12.2	1.2	13.4	3.9	0.0	100.0	500
Other urban	56.5	15.3	1.3	23.1	3.6	0.1	100.0	1451
Rural	61.0	16.9	2.3	16.8	2.9	0.2	100.0	5825
Zanzibar	73.3	6.6	0.2	16.8	2.5	0.7	100.0	202
Region								
Dodoma	56.4	20.7	1.4	17.6	3.9	0.0	100.0	606
Arusha	51.2	24.6	3.8	17.4	2.5	0.5	100.0	507
Kilimanjaro	58.0	11.3	2.9	22.7	5.1	0.0	100.0	371
Tanga	63.1	11.1	1.4	22.8	1.6	0.0	100.0	393
Morogoro	56.1	16.9	3.3	20.7	2.8	0.2	100.0	472
Coast	58.1	17.8	1.7	18.9	3.2	0.4	100.0	142
Lindi	51.0	25.1	2.7	18.5	2.8	0.0	100.0	205
Mtwara	59.4	21.7	2.4	14.8	1.7	0.0	100.0	335
Ruvuma	47.4	28.6	3.2	18.9	1.9	0.0	100.0	288
Iringa	40.7	31.7	7.0	15.8	4.4	0.4	100.0	429
Mbeya	62.3	15.8	1.2	16.6	4.0	0.0	100.0	388
Singida	52.4	18.2	2.2	22.5	4.1	0.6	100.0	291
Tabora	60.3	16.0	1.7	20.1	1.9	0.0	100.0	247
Rukwa	60.0	20.8	1.0	16.8	1.4	0.0	100.0	196
Kigoma	65.0	10.3	2.2	18.2	4.3	0.0	100.0	289
Shinyanga	71.9	10.3	0.0	16.6	1.2	0.0	100.0	685
Kagcra	67.2	8.3	1.4	17.2	5.7	0.2	100.0	480
Mwanza	74.8	9.0	0.6	14.2	1.5	0.0	100.0	596
Mara	66.4	10.9	0.9	17.7	3.5	0.5	100.0	356
Education								
No education	62.7	14.0	1.7	17.0	4.3	0.2	100.0	2991
Primary incomplete	63.6	13.8	2.4	16.6	3.6	0.1	100.0	1499
Completed primary	58.7	19.5	2.1	17.8	1.7	0.1	100.0	3209
Secondary/Higher	55.1	10.5	1.0	30.6	2.8	0.0	100.0	278
Current contraceptive								
No method	59.5	17.4	2.1	17.6	3.2	0.1	100.0	7106
Pill	80.1	1.4	0.4	17.4	0.0	0.6	100.0	279
IUD	(76.3)	(0.0)	(0.0)	(23.7)	(0.0)	0.0	100.0	31
Sterilisation	59.3	7.5	1.2	20.7	11.2	0.0	100.0	134
Periodic abstinence	63.1	7.4	1.3	26.2	2.0	0.0	100.0	152
Other	77.7	7.6	1.0	13.7	0.0	0.0	100.0	275
Total	61.0	16.1	2.0	17.7	3.1	0.1	100.0	7978

Note: Rates shown in parenthese are based on 25-49 women.

5.6 Postpartum Amenorrhoea, Abstinence, and Insusceptibility

For women who are not using contraception, exposure to the risk of pregnancy in the period following birth is influenced by two factors, namely breastfeeding and sexual abstinence. Breastfeeding can prolong postpartum protection from conception by lengthening the duration of amenorrhoea (the period following a birth, but prior to return of menses) and by delaying the resumption of sexual relations.

Table 5.9 shows the percentage of births whose mothers are postpartum amenorrhoeic, abstaining, and postpartum insusceptible by the number of months since birth. Women who are insusceptible are defined as those who are either amenorrhoeic or abstaining following a birth and, thus, are not exposed to the risk of pregnancy. The data refer to whether or not the woman was amenorthoeic or abstaining at the time of the survey.

Percentage of births whose mothers are postpartum amenorrhoeic, abstaining, and insusceptible, by number of months since birth, and median and mean durations, Tanzania 1991/92				
Months since birth	Amenorrhoeic	Abstaining	Insusceptible	Number of births
<2	97.0	91.8	100.0	242
2-3	85.5	72.1	91.6	283
4-5	86.1	53.4	90.8	337
6-7	68.0	49.3	80.3	289
8-9	71.4	46.6	80.3	276
10-11	61.4	30.6	69.4	287
12-13	54.2	30.5	61.1	306
14-15	45.4	28.4	55.7	296
16-17	33.6	24.0	46.6	304
18-19	26.8	24.5	36.9	291
20-21	21.9	18.8	31.3	252
22-23	15.9	15.9	24.6	299
24-25	9.7	12.8	21.4	268
26-27	5.4	7.9	11.5	256
28-29	1.6	4.3	5.9	292
30-31	4.1	5.3	9.5	266
32-33	3.9	2.4	5.5	279
34-35	2.5	3.8	5.5	230
Total	39.4	29.3	46.9	5051
Median	13.3	6.5	15.6	-
Mean	14.2	10.7	16.8	-
Prevalence/Incidence mean	14.0	10.4	16.7	-

About 8-9 months after giving birth, 71 percent of women in Tanzania remain amenorrhoeic, 47 percent are abstaining from sexual relations, and only 20 percent are susceptible to pregnancy. At 18-19 months postpartum, 27 percent remain amenorrhoeic, 25 percent are still abstaining and 63 percent are susceptible to pregnancy. At 24 months, only 10 percent are amenorrhoeic and 13 percent are still abstaining
from sexual relations, while 79 percent are susceptible to pregnancy. The median duration of postpartum amenorrhoea is 13.3 months and of postpartum sexual abstinence 6.5 months, resulting in a postpartum insusceptible period of 15.6 months.

Table 5.10 shows the median durations of postpartum insusceptibility by background characteristics of the mothers. Older women have longer periods of insusceptibility mainly because they are amenorthoeic for a longer period. Women in Dar-es-Salaam have very short periods of postpartum amenorrhoea (median 6 months), whereas women in Zanzibar practice postpartum abstinence only for a short period (3 months). Differences by education are small, except that women with more education have short durations of amenorrhoea.

Table 5.10 Median duration of postpartum insusceptibility by background characteristics

Median number of months of postpartum amenorrhoea, postpartum abstinence, and postpartum insusceptibility, by selected background characteristics, Tanzania 1991/92

Background characteristic	Postpartum amenorrhoea	Postpartum abstinence	Postpartum insusceptibility	Number of women
Age				
<30	12.3	6.2	14.5	3271
$30+$	15.4	7.1	17.3	1780
Resldence				
Mainland	13.4	6.8	15.8	4906
Dar es Salaam	6.1	7.1	9.5	226
Other urban	10.9	9.8	13.2	843
Rural	14.2	6.1	16.1	3837
Zanzibar	11.1	3.2	11.6	146
Education				
No education	14.3	5.9	17.5	1693
Primary incomplete	15.1	4.7	16.2	932
Completed primary	12.2	7.4	14.5	2271
Secondary/Higher	6.6	7.2	11.0	156
Total	13.3	6.5	15.6	5051

Note: Medians are based on current status.

5.7 Termination of Exposure to Pregnancy

The onset of infertility with increasing age reduces the proportion of women who are exposed to the risk of pregnancy. Three measures of decreasing exposure-menopause, terminal infertility, and long-term abstinence-are shown in Table 5.11. For this analysis women are considered to be menopausal if they are neither pregnant nor postpartum amenorrhoeic, but have not had a menstrual period in the six months preceding the survey. The proportion of women who are menopausal rises with age, particularly after age 40, and reaches 38 percent in the oldest age group (48-49).

Table 5.11 Termination of exposure to the risk of pregnancy
Indicators of menopause, terminal infertility and long-term abstinence among currently married women age $30-49$, by age, Tanzania 1991/92

Age	Menopause ${ }^{1}$		Long-term abstinence ${ }^{2}$	
	Percent	Number	Percent	Number
30-34	2.0	548	0.9	935
35-39	5.8	529	0.9	841
40-41	9.2	224	1.3	308
42-43	15.6	179	2.6	224
44-45	24.4	199	5.1	235
46-47	28.7	171	4.2	191
48-49	38.1	173	4.2	189
Total	12.6	2024	1.8	2923

${ }^{1}$ Percentage of non-pregnant, non-amenorrhoeic currently married women whose last menstrual period occurred six or more months preceding the survey or who report that they are menopausal.
${ }^{2}$ Percentage of currently married women who did not have intercourse in the three years preceding the survey.

The second indicator of infecundity is obtained from a demonstrated lack of fertility. If a woman was married at least five years before the survey, has never used contraception, did not give birth in the five years before the survey, and is not currently pregnant, she is considered terminally infertile. By their mid-fourties, almost 60 percent appear to be terminally infertile and by their late fourties, three quarters are infertile.

The last indicator is long-term abstinence, which is the percentage of currently married women who did not have sexual intercourse in the three years preceding the survey. This percentage is quite low even among older women (about 4-5 percent).

CHAPTER 6

FERTILITY PREFERENCES

In the TDHS several questions were asked to all women in order to determine their fertility preferences: their desire to have a(nother) child; if so, how long they would prefer to wait before the next child; and if they could start afresh, how many children they would want. The responses obtained from these questions provided information that was used to classify women by their preferences according to age as well as other background characteristics.

6.1 Desire for More Children

In Tanzania, where contraceptive prevalence is still low and where cultural as well as husbands' influences on reproductive decisions are still strong, the desire for children is widespread. Table 6.1 and Figure 6.1 show the percent distribution of currently married women by their fertility preferences. Onequarter of currently married women indicated that they wanted another child soon, 42 percent wanted another child later, and 23 percent wanted no more children (including 2 percent who have been sterilised). The proportion of currently married women who want another child soon decreases rapidly with the increasing number of living children. For example, 35 percent of currently married women with one living child wanted another child soon compared to only 8 percent of women with 6 children or more. A similar pattern can be observed with the proportion of women who wanted another child later, at least among women with 2 or more children. However, the proportion of currently married women who wanted no more children increased with the increasing number of living children. More than half of women with at least six children did not want any more children.

Table 6.1 Fertility preference by number of living children
Percent distribution of currently married women by desire for more children, according to number of living children, Tanzania 1991/92

Desire for children	Number of living children ${ }^{1}$							Total
	0	1	2	3	4	5	$6+$	
Have another soon ${ }^{2}$	79.9	34.5	25.1	22.9	22.0	18.5	8.4	26.1
Have another later ${ }^{3}$	5.1	57.7	59.5	57.6	45.1	34.8	18.6	41.7
Have another, undecided when	3.3	1.8	0.9	1.0	1.2	1.2	0.7	1.3
Undecided	0.7	0.5	1.7	2.7	2.7	4.8	5.3	2.8
Wants no more	1.2	1.7	8.2	11.1	23.5	33.3	55.5	21.4
Sterilised	0.6	1.1	0.3	0.9	1.7	1.7	4.1	1.7
Declared infccund	8.6	2.5	3.8	3.4	3.6	5.3	7.3	4.8
Missing	0.7	0.1	0.4	0.5	0.3	0.4	0.2	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	472	1031	1014	890	738	598	1294	6038

${ }^{1}$ Includes current pregnancy
${ }^{2}$ Wants next birth within 2 years
${ }^{3}$ Wants to delay next birth for 2 or more years

Figure 6.1
 Fertility Preferences among Currently Married Women 15-49

The percent distribution of currently married women by desire for children according to age is shown in Table 6.2. Older women are much more likely than younger women to want no more children. The desire to limit births increases rapidly with age. Only 2 percent of currently married women $15-19$ years want no more children, but the proportion increases to 49 percent for women 40-44.

Table 6.2 Fertility preferences by age
Percent distribution of currently married women by desire for more children, according to age, Tanzania 1991/92

Desire for children	Age of woman							Total
	15-19	20-24	25-29	30-34	35-39	40-44	45-49	
Have another soon ${ }^{1}$	36.8	26.1	28.4	27.0	24.7	22.5	14.1	26.1
Have another later ${ }^{2}$	58.1	64.9	55.1	41.9	23.4	8.7	3.4	41.7
Have another, undecided when	2.0	1.3	1.2	1.2	1.1	1.1	1.5	1.3
Undecided	0.6	1.3	2.4	3.7	5.9	3.5	2.2	2.8
Wants no more	2.1	5.3	12.2	22.6	36.2	48.9	45.8	21.4
Sterilised	0.0	0.3	0.3	1.2	3.9	4.9	3.6	1.7
Declared infecund	0.3	0.6	0.3	2.4	4.1	10.3	28.8	4.8
Missing	0.2	0.3	0.3	0.2	0.7	0.1	0.6	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	558	1283	1274	935	841	603	545	6038

[^3]The desire to have no more children varies by background characteristics of the women. Table 6.3 shows that there is only limited variation by urban/rural residence or between Zanzibar and Mainland Tanzania. However, there is considerable regional variation. In Kilimanjaro almost half of currently married women did not want another child (47 percent). Singida and Arusha follow with almost one-third of women wanting no more children. In eight regions, less than 20 percent of currently married women wanted no more children, including Shinyanga as the lowest with 14 percent. At the regional level, there was no clear relationship between percent wanting no more children and respondent's level of education.

Table 6.3 Desire to limit childbearing
Percentage of currenly married women who want no more children, by number of living children and selected background characteristics, Tanzania 1991/92

Background characteristic	Number of living children ${ }^{1}$							Total
	0	1	2	3	4	5	$6+$	
Residence								
Mainland	1.6	2.8	8.5	12.0	25.5	34.9	59.8	23.1
Dar es Salaam	(0.0)	7.3	26.0	(20.3)	(47.6)	*	(72.0)	27.9
Other urban	3.4	1.7	18.5	11.8	37.4	41.2	73.2	27.3
Rural	1.6	2.7	5.3	11.4	21.3	33.0	56.9	21.9
Zanzibar	(5.8)	2.6	8.1	(12.3)	15.7	(34.8)	53.6	22.1
Education								
No education	1.0	3.3	6.1	12.9	22.3	30.9	52.6	26.6
Primary incomplete	4.7	5.2	3.4	13.5	27.7	44.6	71.6	33.6
Completed primary	1.3	2.1	10.0	10.1	26.4	33.0	67.6	13.6
Secondary/Higher	*	(0.9)	24.2	(20.9)	*	*	*	23.6
Total	1.7	2.8	8.5	12.0	25.2	34.9	59.6	23.1

Note: Women who have been sterilised are considered to want no more children. Rates shown in parentheses are based on 25-49 women, whereas an asterisk means the rate is based on fewer than 25 women and has been suppressed. ${ }^{1}$ Includes current pregnancy

6.2 Demand for Family Planning Services

Women who are currently married, and who indicate that they either want no more children or want to wait for two or more years before having another child, but are not using contraception, are considered to have an unmet need for family planning. Women with unmet need and those currently using contraception (met need) constitute the total demand for family planning. Table 6.4 shows the percentage of currently married women with unmet need and met need and the total demand for family planning services by background characteristics.

Forty-one percent of currently married women can be considered to constitute total demand for family planning, of which 24 percent is a demand for spacing purposes and 17 percent is a demand for limiting purposes. The demand for family planning services appears to be highest among currently married women living in urban areas (Dar-es-Salaam or other urban areas, about 50 percent), among women with secondary or higher education (62 percent, mostly more demand for spacing) and in selected regions. In Kilimanjaro, Arusha, and Morogoro, the total demand exceeds 50 percent.

Table 6.4 Need for family planning services

Percentage of currently married women with unmet need for family planning, met need for family planning, and the total demand for family planning services, by seleeted background characteristics, Tanzania 1991/92

Background characteristic	Unmet need for family planning ${ }^{1}$			Met need for farrily planning (currently using)			Total demand for family planning			Percentage of demand satisfied	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { women } \end{aligned}$
	$\begin{gathered} \text { For } \\ \text { spacing } \end{gathered}$	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total	$\begin{gathered} \text { For } \\ \text { spacing } \end{gathered}$	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total	$\begin{gathered} \text { For } \\ \text { spacing } \end{gathered}$	$\begin{gathered} \text { For } \\ \text { limiting } \end{gathered}$	Total		
Age											
15-19	17.5	3.0	20.5	5.2	0.0	5.2	22.8	3.0	25.8	20.3	558
20-24	24.8	3.1	27.8	9.1	0.9	10.0	33.9	3.9	37.8	26.3	1283
25-29	25.4	6.5	31.9	8.3	1.6	9.9	33.7	8.1	41.8	23.8	1274
30-34	21.9	10.4	32.2	7.9	6.0	13.8	29.7	16.3	46.0	30.0	935
35-39	11.3	20.8	32.1	3.2	10.1	13.3	14.5	30.9	45.4	29.3	841
40-44	5.9	27.8	33.7	0.8	10.1	10.9	6.7	37.9	44.6	24.5	603
45-49	2.5	27.6	30.1	0.1	7.0	7.1	2.6	34.6	37.2	19.0	545
Resldence											
Mainland	17.7	12.1	29.8	6.0	4.5	10.5	23.7	16.6	40.4	26.1	5870
Dar es Salaam	19.9	13.8	33.7	7.3	8.5	15.7	27.2	22.3	49.5	31.8	349
Other urban	18.6	14.8	33.4	11.0	7.7	18.7	29.6	22.5	52.1	36.0	966
Rural	17.4	11.4	28.8	4.8	3.5	8.4	22.2	14.9	37.2	22.5	4555
Zanzibar	27.2	10.9	38.1	3.1	4.0	7.1	30.3	14.9	45.2	15.7	168
Region											
Dodoma	20.9	9.6	30.5	4.5	5.1	9.6	25.4	14.7	40.1	24.0	445
Arusha	21.7	13.3	35.0	11.9	5.5	17.3	33.6	18.8	52.3	33.1	350
Kilimanjaro	17.5	19.8	37.3	15.0	18.1	33.1	32.5	37.8	70.3	47.0	258
Tanga	21.4	12.0	33.4	10.3	5.5	15.8	31.7	17.6	49.2	32.1	306
Morogoro	24.6	15.4	40.1	6.7	3.9	10.6	31.3	19.3	50.6	20.9	334
Coast	17.8	9.9	27.7	9.3	4.3	13.6	27.1	14.2	41.3	33.0	98
Lindi	17.6	13.3	30.9	6.0	5.6	11.5	23.6	18.9	42.5	27.1	155
Mtwara	14.7	12.6	27.4	1.6	0.7	2.3	16.4	13.4	29.7	7.9	249
Ruvuma	20.7	10.8	31.6	2.3	5.6	7.8	23.0	16.4	39.4	19.8	210
Iringa	15.4	9.2	24.6	8.2	2.9	11.1	23.6	12.1	35.7	31.1	338
Mbeya	20.9	11.0	31.9	9.0	3.1	12.1	29.9	14.1	44.0	27.6	333
Singida	15.9	14.4	30.3	7.9	6.1	14.0	23.8	20.5	44.4	31.7	190
Tabora	12.4	17.1	29.5	4.0	5.0	9.0	16.4	22.1	38.5	23.4	174
Rukwa	20.9	11.0	31.9	3.3	2.3	5.6	24.2	13.3	37.5	14.9	158
Kigoma	15.2	9.1	24.3	3.8	1.1	4.9	19.0	10.2	29.2	16.7	245
Shinyanga	14.0	10.9	24.9	3.6	0.7	4.2	17.6	11.6	29.2	14.6	578
Kagera	12.3	10.8	23.1	2.9	5.5	8.4	15.2	16.3	31.5	26.5	371
Mwanza	16.0	11.2	27.1	1.8	2.2	4.0	17.7	13.4	31.1	12.8	444
Mara	15.5	11.0	26.5	4.3	3.6	7.9	19.8	14.6	34.4	22.9	$285{ }^{\circ}$
Education											
No education	14.6	15.0	29.6	1.3	2.4	3.7	15.9	17.4	33.3	11.1	2505
Primary incomplete	14.5	17.9	32.4	5.1	7.8	12.9	19.6	25.7	45.2	28.5	1166
Completed primary	24.0	6.1	30.1	10.0	4.5	14.6	34.0	10.6	44.6	32.6	2215
Secondary/Higher	14.3	5.2	19.5	28.6	13.8	42.4	42.9	19.0	62.0	68.5	152
Total	18.0	12.1	30.1	5.9	4.5	10.4	23.9	16.6	40.5	25.7	6038

${ }^{1}$ Unmet need for spacing includes pregnant women whose pregnancy was mistimed, amenorrhoeic women whose last birth was mistimed, and women who are neither pregnant nor amenorrhoeic and who are not using any method of family planning and say they want to wait 2 or more years for their next birth. Also included in unmet need for spacing are wornen who are unsure whether they want another child or who want another child but are unsure when to have the birth. Unmet need for limiting refers to pregnant women whose pregnancy was unwanted, amenorrhoeic women whose last child was unwanted and women who are neither pregnant nor amenorthoeic and who are not using any method of family planning and who want no more children.
${ }^{2}$ Using for spacing is defined as women who are using some method of family planning and say they want to have another child or are undecided whether to have another. Using for limiling is defined as women who are using and who want no more children. Note that the specific methods used are not taken into account here.

The need for family planning is not fulfilled for the majority of the women. About one quarter of the total demand is satisfied: 30 percent of married women have an unmet need for family planning services. The lowest proportions of demand satisfied can be observed among women under 20 years and 45-49 years, among women in Zanzibar (16 percent of the demand satisfied), and among women with no education. The highest proportion of demand satisfied occurs among women with secondary or highereducation (69 percent) and in Kilimanjaro region (47 percent). It appears that educated women are much more successful than other women in meeting their family planning needs.

6.3 Ideal and Actual Number of Children

In addition to the actual number of children that women have, the TDHS examined the ideal number of children that women desired. The question required the respondent to consider abstractly and independently of her family size and give the number of children she would like to have if she could start all over again. Table 6.5 shows the percent distribution of all women by ideal number of children and mean ideal number of children for all women and currently married women, according to the number of living children. About 14 percent of women gave a non-numeric response, such as "up to God" or "as many as possible."

Table 6.5 Ideal number of children
Percent distribution of all women by ideal number of children and mean ideal number of children for all women and for currently married women, according to number of living children, Tanzania 1991/92

ldeal number of children	Number of living children ${ }^{1}$							Total
	0	1	2	3	4	5	$6+$	
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.4	0.3	0.1	0.1	0.0	0.3	0.1	0.2
2	4.5	3.0	3.3	1.0	0.6	0.8	0.9	2.5
3	7.7	10.6	6.6	4.5	2.2	1.6	1.2	5.7
4	24.9	27.4	20.1	18.3	13.8	6.9	11.6	19.4
5	16.2	16.9	19.2	12.8	12.5	14.6	6.1	14.3
$6+$	31.8	34.1	40.5	50.2	57.4	58.8	59.7	44.3
Non-numeric response	14.6	7.8	10.2	13.1	13.4	17.1	20.3	13.7
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of women	2345	1545	1275	1043	870	694	1466	9238
Mean ideal number	5.4	5.4	5.8	6.1	6.5	7.1	7.4	6.1
Number of women	2002	1425	1145	907	753	575	1168	7976
Mean for women in union	5.8	5.6	5.9	6.2	6.6	7.2	7.4	6.4
Number of women in union	403	935	901	775	639	496	1032	5181

Note: The means exclude women who gave non-numeric responses.
${ }^{1}$ Includes current pregnancy

The mean ideal family size among all women was 6.1 children and among currently married women 6.4 children. There is a correlation between the actual and ideal family size. The mean ideal number of children increases from 5.4 among childless women to 7.4 among women with 6 or more living children.

The reason for this is twofold. First, to the extent that women implement their preferences, those who want larger families will tend to achieve larger families. Secondly, women may adjust their ideal family size upwards as the actual number increases.

Forty-four percent of all women want at least six children, 59 percent at least five, and 78 percent at least four. Only 8 percent of respondents considered three children or fewer an ideal family size. This proportion is slightly higher among women with none or one child: 13 percent of women with no child or with one child wanted three children or less. Despite the pronatalist attitudes of most women, there is some evidence of unwanted fertility; 10 percent of women with 5 children and 20 percent of those with 6 or more children reported ideal numbers of children that were less than the actual number of children they have.

Table 6.6 presents the mean ideal number of children for all women by age and selected background characteristics. Women with secondary or higher education and women in Kilimanjaro region wanted fewer than five children (means of 4.2 and 4.3 , respectively). Women with no education have the largest mean ideal number of children (7.3). Women in Zanzibar want more children on average (6.8) than women on mainland Tanzania (6.0).

Table 6.6 Mean ideal number of children by background characteristics
Mean ideal number of children for all women, by age and selected background characteristics, Tanzania 1991/92

Background characteristic	Age of woman							Total
	15-19	20-24	25-29	30-34	35-39	40-44	45-49	
Residence								
Mainland	5.5	5.4	5.8	6.4	7.0	7.2	7.5	6.0
Dar es Salaam	4.5	4.6	5.3	5.6	(6.1)	(7.2)	,	5.2
Other urban	4.8	4.6	5.2	5.9	6.7	6.1	7.2	5.4
Rural	5.8	5.7	5.9	6.6	7.1	7.5	7.6	6.3
Zanzibar	6.0	5.9	7.2	7.7	(6.9)	(7.6)	(9.4)	6.8
Region								
Dodoma	5.7	5.1	6.1	(6.7)	(8.3)	(7.1)	(7.3)	6.3
Arusha	4.9	4.8	5.2	(5.6)	(6.6)	(6.0)	(6.9)	5.4
Kilimanjaro	3.8	4.0	4.1	(4.8)	4.8	(5.6)	(4.4)	4.3
Tanga	4.8	4.8	5.6	6.3	(5.8)	(6.3)	(6,3)	5.5
Morogoro	5.4	5.8	5.8	6.4	8.1	(8.6)	(8.1)	6.5
Coast	5.2	5.6	(6.6)	(7.3)	(8.1)	(9.2)	(9.9)	6.8
Lindi	4.9	5.5	5.4	(5.7)	(7.0)	(7.2)	(7.8)	6.0
Mtwara	4.9	5.7	5.1	(6.6)	(6.7)	(7.0)	(7.6)	6.0
Ruvuma	4.8	4.9	5.9	6.3	6.7	(6.4)	(6.6)	5.7
Iringa	(5.0)	4.6	4.8	6.0	6.4	*	(8.2)	5.5
Mbeya	5.5	5.1	5.3	(6.2)	(7.4)	*	*	5.8
Singida	5.7	5.6	6.2	(6.6)	(6.6)	(7.7)	(8.9)	6.4
Tabora	6.5	6.4	5.6	6.2	(7.4)	7.4	(7.6)	6.6
Rukwa	5.8	5.6	6.5	6.6	6.7	(8.4)	(6.3)	6.3
Kigoma	6.2	6.4	7.0	7.0	8.3	(8.0)	(9.5)	6.9
Shinyanga	6.5	6.5	6.7	6.8	7.9	(7.9)	(9,0)	6.9
Kagera	5.9	6.0	5.9	6.5	6.9	(8.1)	(7.9)	6.3
Mwanza	6.4	6.1	6.8	7.1	(7.4)	(7.4)	(7.9)	6.7
Mara	5.7	5.9	6.0	7.0	7.3	7.1	(8.3)	6.4
Education								
No education	6.3	6.6	6.9	7.0	7.7	7.8	8.0	7.3
Primary incomplete	5.7	6.3	5.9	6.6	6.9	6.7	6.4	6.3
Completed primary	5.4	5.1	5.4	5.7	5.2	6.3	5.5	5.3
Secondary/Higher	4.3	4.2	3.8	4.7	*	*	*	4.2
Total	5.5	5.4	5.8	6.4	7.0	7.2	7.5	6.1

[^4] 25 women and has been suppressed.

6.4 Fertility Planning

In the TDHS, women were asked questions for each child born in the preceding five years and any pregnancy to determine whether the pregnancy was planned (wanted then), wanted but at a later time, or unwanted (wanted no more). The answers indicate the degree to which couples are successfully controlling fertility. However, it must be noted that these questions required the respondent to accurately recall her wishes at one or more points in the last five years and to report them honestly. Here, the danger of rationalization is present since an unwanted conception may become a cherished child. Therefore, the values presented here are likely to be underestimates of the proportion of couples successfully controlling their fertility.

Table 6.7 shows the percent distribution of births in the five years preceding the survey by planned fertility status, according to birth order and mother's age at birth. Three-quarters of births in the last five years were wanted at the time they were conceived, 15 percent were wanted later, and 8 percent were not wanted at all. These proportions vary according to birth order. Eleven percent of the fourth or higher order births were not wanted, 18 percent were wanted at a later time, and 70 percent were wanted at that time. The proportion of births that were not wanted at all generally increases with age of the mother. On the other hand, the older the women, the lower the proportion of births that were wanted at the time they were conceived. The proportion of births wanted later is low at the youngest age group, reaches a peak among age 25-29, and then decreases.

Table 6.7 Fertility planning status

Percent distribution of births in the five years preceding the survey by fertility planning status, according to birth order and mother's age, Tanzania 1991/92

Birh order and mother's age	Planning status of birth ${ }^{1}$					Number of births
	Wanted then	Wanted later	Wanted no more	Missing	Total	
Birth order						
1	84.2	6.4	8.4	0.9	100.0	2005
2	78.4	17.1	4.1	0.5	100.0	1669
3	76.3	18.2	4.1	1.4	100.0	1284
4+	69.7	17.9	10.8	1.6	100.0	4106
Age at birth						
<19	80.4	9.9	8.9	0.9	100.0	1627
20-24	78.4	16.1	4.7	0.8	100.0	2656
25-29	73.2	20.1	5.5	1.3	100.0	2148
30-34	73.5	16.7	7.9	1.9	100.0	1299
35-39	71.6	12.2	14.4	1.7	100.0	874
40-44	65.2	8.5	24.9	1.4	100.0	381
45-49	60.0	7.8	26.8	5.4	100.0	79
Total	75.5	15.2	8.1	1.2	100.0	9065

${ }^{1}$ Includes current pregnancy.

The potential demographic impact of avoiding unwanted births can be estimated by calculating the wanted fertility rate. This calculation proceeds in the same way as the total fertility rate, but the unwanted births are excluded from the numerator. In this context unwanted births are defined as births that exceed the number considered ideal by the respondent. The rate that is obtained from these calculations represents the level of fertility that would have prevailed during the three years preceding the survey if all unwanted births were prevented. Comparison of actual rates with wanted rates indicates the potential demographic impact of the elimination of unwanted births.

Table 6.8 shows the wanted total fertility rate and the actual total fertility rate for the three years preceding the survey by selected background characteristics. Overall, the wanted total fertility rate is 11 percent lower than the actual total fertility rate. Thus, if the unwanted births were eliminated, the total fertility rate in Tanzania would be 5.6 children bom per woman. The differences between actual and wanted fertility rates are fairly similar by urban/rural residence and level of education (less than 1 child). The one exception is among women in the northem highlands, where the wanted total fertility rate (4.6) is more than one child less than the actual total fertility rate (6.0). However, in general, even if women in Tanzania were to control their childbearing, fertility rates would remain high, either because women still prefer large families or they are not familiar with the idea of conscious reproductive choice. Hence, the demographic impact of family planning can be increased by promoting a desire for smaller families.

Table 6.8 Wanted fertility rates
Total wanted fertility rates and total fertility rates for the three years preceding the survey, by selected background characteristics, Tanzania 1991/92

Background	Total wanted fertility rate characteristic	Total fertility rate
Residence	5.57	6.24
Mainland	3.72	4.04
Dar es Salaam	4.77	5.56
Other urban	5.91	6.58
\quad Rural	5.73	6.38
Zanzibar		
Zone	5.06	5.66
Coastal	4.63	6.01
Northern Highlands	6.18	6.88
Lake	6.65	7.06
Central	5.81	6.25
Southern Highlands	4.55	5.11
South		
Education	5.93	6.50
No education	5.47	6.44
Primary incomplete	5.32	5.99
Completed primary	3.69	4.22
Secondary/Higher	5.57	6.25
Total		

Note: Rates are based on births to women 15-49 in the period $1-36$ months preceding the survey. The total fertility rates are the same as those presented in Table 3.2.

CHAPTER 7

INFANT AND CHILD MORTALITY

Including an estimation of infant and child mortality rates in the demographic assessment of Tanzania is important because mortality levels in children below the age of five may have profound impact on a number of demographic parameters. Childhood mortality data are also useful in assessing the impact of child survival programmes and identifying child populations that are at high risk.

Mortality estimates were calculated from information collected in the birth history section of the individual questionnaire. The section began with questions about the overall childbearing experience of respondents (i.e., the number of sons and daughters who live in the household, those who live elsewhere, and those who have died). These questions were followed by a retrospective birth history in which data were obtained on sex, date of birth, survivorship status, and current age or age at death of each of the respondents' live births.

The rates presented in this chapter are defined as follows:

- Neonatal mortality: the probability of dying within the first month of life
- Postneonatal mortality: the difference between infant and neonatal mortality
- Infant mortality: the probability of dying before the first birthday
- Child mortality: the probability of dying between the first and fifth birthday
- Under-five mortality: the probability of dying before the fifth birthday.

All rates are presented per 1,000 live births. The only exception is the child mortality probability ($1-4$ years), which is expressed per 1,000 children aged 1 year exactly.

7.1 Infant and Child Mortality

Neonatal, postneonatal, infant, child and under-five mortality rates are shown in Table 7.1 for three five-year periods in the 15 years preceding the survey. For the most recent five-year period (1987-91) under-

Table 7.1 Infant and child mortality
Infant and child mortality rates by five-year periods preceding the survey, Tanzania 1991/92

Years preceding survey	Neonatal mortality (NN)	Postneonatal mortality (PNN)	Infant mortality $\left({ }_{1} \mathrm{q}_{0}\right)$	Child mortality $\left(4 \mathrm{q}_{1}\right)$	Under-flve mortality $\left({ }_{3} \mathrm{q}_{0}\right)$
$0-4$	37.9	53.7	91.6	54.6	141.2
$5-9$	42.4	66.2	108.6	66.9	168.2
$10-14$	41.2	52.4	93.7	76.0	162.6

five mortality was 141 per 1,000 live births and infant mortality 92 per 1,000 live births. ${ }^{1}$ Among all deaths under five years, 27 percent occurred during the neonatal period, 38 percent during the postneonatal period, and 35 percent at ages 1-4 years.

During the fifteen years preceding the TDHS, under-five mortality fell from 163 deaths to 141 deaths per thousand live births. Virtually all of the decline was due to a decline in mortality at 1-4 years. Infant mortality remained at the same level during 1987-91 as it was during 1977-81. During the period 1982-86, infant mortality was estimated at 109 per 1,000 live births, which was an increase compared to the preceding five-year period (1977-81, 94 per 1,000 live births). The increase was entirely due to higher postneonatal mortality, since neonatal mortality did not change.

Under five and infant mortality estimates from TDHS can be compared in Figure 7.1 with estimates based on the 1978 and 1988 censuses. Since the census estimates are based on the indirect method of estimation, indirect mortality estimates are also presented for TDHS in addition to the direct estimates. Indirect estimates of infant and child mortality were produced using the Trussell variant of the Brass method. This method uses the reports on the number of children ever born and still alive by age of the respondent to estimate mortality levels and trends. In contrast to the direct approach, which is based on birth history data,

Figure 7.1
Trends in Mortality, Infants and Children Under Five, Direct and Indirect Estimates

Note: Census data from 1978 and 1988

[^5]no information is used on ages at death; model life tables are used to obtain indirect mortality estimates. The indirect estimates tend to be higher than the direct estimates of mortality, particularly the most recent estimate, which is based on the child mortality experience of women $20-24$ years. ${ }^{2}$ For the indirect estimates in both TDHS and the 1988 census, North model life tables were used.

There are marked discrepancies between census and TDHS estimates of under-five mortality, whereas infant mortality data are fairly consistent. The census estimates of under-five mortality are 231 and 192 per 1,000 live births for 1975 and 1985, respectively (Bureau of Statistics, undated). The census estimate for 1985 is about 30 points higher than the indirect and direct estimates from the TDHS, which are at a remarkably similar level. Part of the difference may be due to the fact that the 1985 census estimate was based on women 20-24, who may have excess mortality, as noted above. Analysis of the indirect mortality census data for women 20-44 may provide further insights.

Table 7.2 and Figures 7.2 and 7.3 present neonatal, postneonatal, infant, child and under-five mortality rates by selected background characteristics for the ten-year period (1982-1991) preceding the survey. There was no difference in mortality rates between rural and uban areas. As expected, all mortality rates decreased with increasing level of education. The largest education-related differentials are observed

Table 7.2 Infant and child mortality by background characteristics
Infant and child mortality rates for the ten-year period preceding the survey, by selected background characteristics, Tanzania 1991/92

Background characteristic	Neonatal mortality (NN)	Postneonatal mortality (PNN)	Infant mortality $\left({ }_{1} q_{0}\right)$	Child mortality $\left({ }_{4} q_{1}\right)$	Under-flve mortality ${ }_{5} \mathrm{q}_{0}$)
Residence ${ }^{1}$					
Urban	52.1	56.2	108.3	57.1	159.2
Rural	36.9	60.3	97.2	61.0	152.2
Zone					
Coastal	44.7	62.3	107.0	59.7	160.3
Northem Highlands	34.4	21.1	55.5	24.4	78.6
Lake	38.1	69.6	107.7	68.5	168.9
Central	51.2	76.6	127.9	71.9	190.6
Southern Highlands	31.8	48.1	79.9	54.7	130.2
South	41.5	57.6	99.1	71.0	163.1
Education					
No education	43.1	60.3	103.3	65.8	162.3
Primary incomplete	35.4	59.5	95.0	67.0	155.6
Completed primary	39.7	59.7	99.4	47.9	142.5
Secondary/Higher	29.0	42.8	71.8	31.3	100.8
Medical maternity care					
No antenatal/Delivery care	41.0	54.9	95.9	69.5	158.7
Either antenatal or delivery	33.6	55.1	88.7	54.4	138.2
Both antenatal \& delivery	38.7	53.5	92.3	39.6	128.3
Total	40.0	59.5	99.4	60.2	153.6

${ }^{1}$ Number of observations for Dar es Salaam and Zanzibar is too small for mortality estimations.

[^6]Figure 7.2
Infant Mortality in the Ten Years Preceding the Survey by Selected Characteristics

Figure 7.3
Child Mortality (1-4 years) in the Ten Years Preceding the Survey by Selected Characteristics

for mortality during ages 1-4 years. The benefits of higher levels of mother's education become most evident if the mother has at least some secondary education; the differences between no formal education and primary education are small. Nonformal adult education may have contributed to reducing the excess mortality risk of children of mothers without formal education compared to children of mothers with primary education.

Regional differences in childhood mortality were observed by collapsing the administrative regions into six ecological/geographical zones. This strategy allowed the necessary geographical comparisons to be made because it provided relatively large numbers of deaths in each zone and thereby reduced sampling error. However, it should be noted that these "zones" do not conform to the administrative zones of the United Republic of Tanzania. The classification of regions into the zones is as shown below:

- Coastal zone:
- Northem Highlands zone:
- Lake zone:
- Central zone:
- Southem Highlands zone:

Tanga, Morogoro, Coast, Dar es Salaam, and Zanzibar Arusha and Kilimanjaro
Tabora, Kigoma, Shinyanga, Kagera, Mwanza, and Mara Dodoma and Singida
Iringa, Mbeya, and Rukwa

- Southern zone: Lindi, Mtwara, and Ruvuma.

With the exception of neonatal mortality, mortality rates were lowest in the Northern Highlands; infant mortality was 56 per 1,000 live births, while under-five mortality was 79 per 1,000 live births. Mortality levels among children living in the Southern Highlands were also somewhat lower than average; infant mortality and under-five mortality were 80 and 130 per 1,000 live births, respectively. The Coastal, Lake, and Southern zones take an intermediate position, with infant mortality rates on the order of 100 per 1,000 and under-five mortality rates of about 160 per 1,000 live births. Finally, mortality rates were found to be highest in the Central zone (infant mortality 128 and under-five mortality 191 per 1,000 live births).

Quality of care received during the antenatal and delivery periods is known to be an important determinant of neonatal survival. Respondents were asked to report on services they received while pregnant or during delivery. Neonatal mortality among those who received neither antenatal nor delivery care was 50 per thousand live births; among those who received both services mortality during the first month of life was 39 per thousand live births for the five-year period prior to the survey (no maternity care data were collected for births more than 5 years before the survey). All other measures of mortality (especially childhood and under-five mortality) were relatively higher among women who receive no antenatal nor delivery care.

Table 7.3 presents mortality rates for the ten years preceding the survey by selected demographic characteristics. Male children have slightly higher mortality than female children in all three age periods. Children borne to mothers below 20 years of age had higher mortality than children borne to mothers at older ages. Paradoxically, children borne by older women (40-49 years) had the lowest mortality.

Parity was also associated with mortality. First-born and high-parity children had higher mortality than children of birth orders $2-6$, but this association is largely restricted to the neonatal period. The relationship between birth intervals and mortality was also assessed. Shorter birth intervals were associated with much higher mortality both during and after infancy. All mortality measures among children born less than two years after the previous birth were more than 100 percent higher than those of children born at least four years after the previous birth. The difference in mortality was highest (elevated by about 200 percent) in the neonatal period and 1-4 years age group. High mortality associated with shorter birth interval during the neonatal period may be due to prenatal influences, such as matemal depletion, while the observed high mortality in higher age categories may be due to economic stress associated with large family size. In general, these data indicate the importance of child spacing for child survival.

Table 7.3 Infant and child mortality by demopraphic characteristics
Infant and child mortality rates for the ten-year period preceding the survey, by selected demographic characteristics, Tanzania 1991/92

Demographic characteristic	Neonatal mortality (NN)	Postneonatal mortality (PNN)	Infant mortality $\left({ }_{1} \mathbf{q}_{0}\right)$	Child mortality $\left({ }_{4} \mathrm{q}_{1}\right)$	Under-flve mortality $\left({ }_{5} \mathrm{q}_{0}\right)$
Sex of child					
Male	42.6	61.2	103.7	63.2	160.4
Female	37.4	57.7	95.1	57.1	146.8
Age of mother at birth					
<20	54.5	71.9	126.4	76.8	193.5
20-29	34.6	54.4	89.0	57.8	141.7
30-39	41.2	64.1	105.3	52.5	152.3
40-49	34.2	35.7	69.9	55.4	121.4
Birth order					
1	53.0	60.3	113.3	60.8	167.3
2-3	34.6	58.7	93.3	63.0	150.4
4-6	32.8	59.8	92.6	60.5	147.5
$7+$	45.9	59.2	105.1	53.3	152.8
Prevlous birth interval					
<2 yrs	68.6	91.5	160.1	83.8	230.5
2.3 yrs	27.4	52.3	79.7	59.3	134.3
$4 \mathrm{yrs}+$	25.3	39.8	65.1	29.4	92.6

7.2 High-Risk Fertility Behaviour

Generally, infants and children have a greater probability of dying if they are born to mothers who are too young or too old, if they are born after a short birth interval, or if they are of high parity. In the analysis of the effects of high-risk fertility behaviour on child survival, a mother is classified as "too young" if she is less than 18 years of age, and "too old" if she is over 34 years of age at the time of delivery. A "short birth interval" is defined by a birth occurring less than 24 months after the previous birth, and a child is of "high birth order" if the mother had previously given birth to three or more living children (i.e., if the child is of birth order 4 or higher). Children can be further cross-classified by combinations of these characteristics. First births, although often at increased risk, are not included in this analysis because they are not considered an avoidable risk.

The first column in Table 7.4 shows the percentage of children born in the five years preceding the survey who fall into specific risk categories. Thirty-eight percent of children had a single risk characteristic, while 21 percent had more than one high-risk characteristic and were thus placed in the multiple risk category. Overall, over a half of children (59 percent) were at elevated risk as a result of the mother's fertility pattern.

Table 7.4 High-risk fertility behaviour

Percent distribution of children born in the five years preceding the survey who are at elevated risk of mortality, and the percent distribution of currently married women at risk of conceiving a child with an elevated risk of mortality, by category of increased risk, Tanzania 1991/92

Risk category	Births in the 5 years preceding the survey		Percentage of currently married women $^{\mathrm{a}}$
	Percentage of births	$\begin{aligned} & \text { Risk } \\ & \text { ratio } \end{aligned}$	
Not in any high-risk category	41.5	1.00	$24.5{ }^{\text {b }}$
Single hlgh-risk category			
Mother's age < 18	6.6	1.80	1.1
Mother's age > 34	0.2	*	2.7
Birth interval < 24	5.9	(1.31)	10.4
Birth order > 3	25.2	0.94	17.5
Subtotal	38.0	1.16	31.7
Multiple high-risk category			
Age <18 \& birth interval $<24^{\text {c }}$	0.2	*	0.4
Age >34 \& birth interval<24	0.0	*	0.1
Age >34 \& birth order>3	12.7	0.92	24.9
Age >34 \& birth interval $<24 \&$ birth order >3	1.7	*	5.4
Birth interval < 24 \& birth order >3	5.9	(1.46)	12.9
Subtotal	20.5	1.15	43.8
In any hlgh-risk category	58.5	1.16	75.5
Total	100.0	-	100.0
Number	8036	-	6038

Note: Risk ratio is the ratio of the proportion dead of births in a specific risk category to the proportion dead of births not in any high-risk category. Figures in parentheses are ratios based on fewer than 250-499 cases. An asterisk means the data are based on fewer than 250 cases and have been suppressed.
${ }^{\text {a }}$ Women were assigned to risk categories according to the status they would have at the birth of a child, if the child were conceived at the time of the survey: age less than 17 years and 3 months, age older than 34 years and 2 months, latest birth less than 15 months ago, and latest birth of order 3 or higher.
${ }^{6}$ Includes sterilised women
${ }^{c}$ Includes the combined categories age <18 and birth order >3.

Forty-six percent of all children were of birth order 4 or higher. Among births with a single risk characteristic, high birth order was the most common one (25 percent of all births). Common combinations of risk factors were matemal age 35 years and over with birth order 4 or higher, and birth interval less than 24 months and birth order 4 and over.

To obtain an idea of the magnitude of the mortality risk associated with fertility behaviour, risk ratios were calculated for each of the risk categories, as shown in the second column of Table 7.4. A risk ratio in this context is defined as the ratio of the proportion of children in the category who have died to the proportion who have died in the not in any risk category. Children were classified not to be in any risk category if they were born to mothers age 18-34, at an interval of 24 months or more after the previous birth, and with birth order 3 or less. Compared to children not in any risk category, the risk of mortality among children in at least one risk category was increased by 16 percent only. The increased risk of dying was similar in children in single and multiple risk categories. Among children with a single risk factor, the highest risk of dying was noted among those born to mothers younger than 18 years of age (elevated by 80 percent). Children born less than 24 months after the previous birth and of birth order 4 or higher had the highest risk of dying (risk increased by 46 percent) in the multiple risk category.

Based on this brief analysis of high-risk fertility behaviour, the question can be asked: How many women currently have the potential for having a high-risk birth? This may be answered by simulating the distribution of currently married women by the risk category into which a currently conceived birth would fall. In other words, a woman's current age, time elapsed since last birth, and parity are used to determine into which category her next birth would fall, if she were to conceive at the time of the survey. To determine what proportion of women in the simulation have the potential for a high-risk birth, it is assumed that all but sterilised women conceive. The results of this hypothetical situation are shown in column 3 of Table 7.4.

The simulation results indicate that without any form of fertility control among women who share a high-risk profile, the percentage of estimated high-risk births (in any category) will increase. This can be seen by comparing the proportion of women who currently have the potential for a high-risk birth (76 percent) with the proportion of births in the five years preceding the survey that were classified as high-risk (59 percent). This hypothetical increase in high-risk births is related to increases in the percentage of births in the multiple risk categories, from 21 to 44 percent. These findings clearly show the importance of family planning in prevention of mortality among children and suggests that impact on mortality can be achieved by targeting family planning services to significant women in risk categories.

CHAPTER 8

MATERNAL AND CHILD HEALTH

Findings in three areas of importance to maternal and child health-maternity care, vaccinations, and common childhood illnesses and their treatment-are presented in this chapter. This information can be used to assess progress in the implementation of child survival programmes and to identify the characteristics of nonusers of matemal and child health services. Data were obtained for all live births occurring in the five years preceding the survey.

8.1 Antenatal Care and Delivery Assistance

Table 8.1 shows the percent distribution of live births in the five years preceding the survey by source of antenatal care received during pregnancy, according to matemal and background characteristics. Interviewers were instructed to record all persons a woman may have seen for care, but in the table, only the provider with the highest qualifications is considered (if more than one person was seen). The findings of this survey indicate very high utilization of antenatal care in Tanzania (for most pregnancies 96 percent). According to mothers' reports, more than 9 of 10 births received antenatal care from a medical professional (92 percent). Mostly, antenatal care was provided by a trained nurse/midwife (56 percent) or a MCH aide (30 percent). Doctors provided 7 percent of antenatal care and traditional birth attendants (TBAs) 4 percent. During the five-year period preceding the survey, mothers who received no antenatal care accounted for only 3 percent of births.

Differences in attendance of antenatal care were small by birth order of the child and age of the mother, attendance was high in all categories.

Births to women in Zanzibar were more likely to receive antenatal care than births on Tanzania mainland. More pronounced differences were observed in the sources of antenatal care for births in urban and rural areas. Women in urban areas were more likely to receive antenatal care from a doctor or trained nurse or midwife, while women in rural areas were more likely to receive antenatal care from MCH aides and TBAs. These differences may be due to the fact that some service providers such as doctors are mainly located in urban areas making them less accessible to rural women. Doctors were prominent particularly in Dares Salaam where they accounted for 43 percent of antenatal care. At the other extreme is Zanzibar, where only 2 percent of births received antenatal care from a doctor.

There is some regional variation in utilization of antenatal care. Morogoro and Arusha had the largest number of births reportedly receiving no antenatal care (10 and 11 percent, respectively) whereas Iringa, Mbeya, Rukwa, and Shinyanga had relatively high utilisation of traditional birth attendants for antenatal care (all in the range of 11-12 percent of births). Apart from Dar es Salaam the proportion of women who reportedly received antenatal services from doctors was high in the Coast region (26 percent).

Births to women with no education were more likely not to receive any antenatal care than those to women with at least primary education (7 and 1 percent, respectively). Also there were significant differences in the sources of antenatal care for births according to mother's education. Women with secondary education or higher were more likely to receive antenatal care from a doctor or trained nurse midwife, whereas women with no education were more likely to receive care from a $\mathbf{M C H}$ aide or birth attendant.

Table 8.1 Antenatal care
Percent distribution of live births in the five years preceding the survey by source of antenatal care during pregnancy, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Antenatal care provider ${ }^{1}$							Number of births
	Doctor	$\begin{aligned} & \text { Trained } \\ & \text { nurse/ } \\ & \text { Midwife } \end{aligned}$	MCH aide	$\begin{aligned} & \text { Trad. } \\ & \text { birth } \\ & \text { attendant } \end{aligned}$	No one	Don't know/ Missing	Total	
Mother's age at birth								
<20	6.2	54.5	30.9	4.6	3.0	0.8	100.0	1472
20-34	7.1	55.8	29.5	4.2	2.8	0.5	100.0	5385
35+	3.8	56.8	28.4	4.3	5.9	0.7	100.0	1174
Birth order								
1	8.4	56.1	28.7	3.8	2.4	0.7	100.0	1795
2-3	7.4	55.8	29.6	4.2	2.6	0.4	100.0	2580
4-5	5.1	54.4	31.8	4.4	3.6	0.6	100.0	1642
$6+$	4.6	56.3	28.7	4.8	4.6	0.9	100.0	2014
Resldence								
Mainland	6.6	55.5	29.5	4.4	3.3	0.6	100.0	7793
Dar es Salaam	43.0	48.0	6.5	0.0	2.5	0.0	100.0	373
Other urban	10.6	68.4	19.1	1.2	0.5	0.3	100.0	1273
Rural	3.6	53.2	33.1	5.4	4.0	0.7	100.0	6148
Zanzibar	1.9	64.3	32.7	0.0	1.0	0.0	100.0	238
Region								
Dodoma	4.8	39.4	47.9	5.1	2.8	0.0	100.0	623
Arusha	10.0	55.7	19.5	2.2	11.2	1.3	100.0	534
Kilimanjaro	7.6	67.1	24.1	0.0	0.5	0.8	100.0	368
Tanga	2.3	46.2	51.1	0.0	0.2	0.2	100.0	406
Morogoro	10.7	54.9	19.9	4.2	10.1	0.3	100.0	471
Coast	25.5	62.0	3.6	0.4	7.4	1.1	100.0	116
Lindi	8.7	58.8	27.6	0.6	2.8	1.4	100.0	178
Mtwara	1.9	54.0	43.7	0.0	0.5	0.0	100.0	208
Ruvuma	2.0	63.1	34.8	0.0	0.0	0.2	100.0	271
Iringa	10.2	39.7	35.6	11.6	1.8	1.1	100.0	439
Mbeya	0.7	51.2	34.3	10.9	2.8	0.0	100.0	375
Singida	6.2	50.1	29.9	8.3	5.6	0.0	100.0	306
Tabora	1.3	68.0	29.4	0.6	0.5	0.1	100.0	231
Rukwa	3.0	40.1	41.3	10.7	3.1	1.8	100.0	223
Kigoma	2.7	52.9	39.2	3.7	0.4	1.1	100.0	358
Shinyanga	0.2	63.7	21.2	11.0	2.5	1.5	100.0	791
Kagera	0.8	66.3	29.8	0.7	2.4	0.0	100.0	554
Mwanza	2.3	64.3	26.3	3.5	2.7	1.0	100.0	605
Mara	6.5	63.8	21.5	3.8	3.8	0.6	100.0	363
Mother's education								
No education	3.2	53.0	30.2	6.2	6.5	0.9	100.0	2841
Some primary	5.8	57.0	30.5	3.8	2.0	0.9	100.0	1501
Completed primary	8.2	57.1	29.9	3.3	1.3	0.3	100.0	3448
Secondary/Higher	25.3	60.2	13.6	0.0	0.2	0.7	100.0	242
Total	6.5	55.7	29.6	4.3	3.3	0.6	100.0	8032

Note: Figures are for births in the period 1-59 months preceding the survey. The coding categories in the TDHS questionnaire are: doctor/medical assistant, rural medical aide, nurse/midwife, MCH aide, village healh worker, trained traditional birth attendant, traditional birth attendant (TBA), and other.
${ }^{1}$ If the respondent mentioned more than one provider, only the most qualified provider is considered

Pregnancy monitoring and detection of complications are the main objectives of antenatal care. The advantage of starting antenatal care within the first three months of pregnancy is that a woman's normal baseline health can be assessed and monitoring can be done regularly. Obstetricians generally recommend that antenatal care be started at 12 weeks (3 months) of gestation and visits be made on a monthly basis to the 28th week (7th month), fortnightly to the 36th week (8th month), and then weekly until the 40th week or delivery. If the first antenatal visit is made at the third month of pregnancy, this schedule translates to a total of about 12 visits during the pregnancy. To detect possible delivery complications at least one visit is required during the last weeks of pregnancy.

Figure 8.1 shows the distribution of number of antenatal visits made by pregnant mothers. In about 70 percent of all births, mothers made four or more antenatal care visits. The median number of antenatal visits per pregnancy was five. Clearly, most women make fewer than the recommended number of visits during pregnancy. This may be related to the stage of pregnancy at the first antenatal care visit. One third of births (32 percent) received antenatal care before five months of gestation and 28 percent went for the first visit at five months of pregnancy. The median duration of gestation at which the first antenatal care visit was made was 5.6 months.

To obtain information about tetanus toxoid vaccination, women were asked to report if they received these injections against tetanus during pregnancy for all births in the five years preceding the survey; the results are presented in Table 8.2. These injections provide protection against neonatal tetanus, one of the principal causes of death among neonates in many developing countries. For full protection, a pregnant woman should receive two doses of the toxoid with at least one month between the doses. However, if a woman has been vaccinated during previous pregnancies, she may only require one booster dose during a current pregnancy, whereas five doses of tetanus toxoid are considered to provide lifetime protection.

Table 8.2 Tetanus toxoid vaccination

Percent distribution of births in the five years preceding the survey, by number of tetanus wxoid injections given to the mother during pregnancy and whether the respondent received an antenatal card, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Number of tetanus toxoid injections					Percentage given antenatal card	Number of births
	None	One dose	Two doses or more	Don't know/ Missing	Total		
Mother's age at birth							
< 20	7.6	14.8	77.2	0.4	100.0	95.4	1472
20-34	9.8	18.8	70.7	0.7	100.0	95.5	5385
35+	14.0	17.4	68.0	0.6	100.0	92.2	1174
Birth order 6.613 .40 .4							
1	6.6	13.4	79.4	0.6	100.0	95.5	1795
2-3	9.0	18.7	71.8	0.5	100.0	95.8	2580
4-5	11.6	21.2	66.3	0.8	100.0	95.0	1642
$6+$	13.0	18.0	68.3	0.7	100.0	93.4	2014
Residence							
Mainland	10.1	16.8	72.5	0.6	100.0	94.9	7793
Dar es Salaam	4.4	15.6	79.6	0.4	100.0	96.6	373
Other urban	7.0	15.7	76.6	0.7	100.0	98.6	1273
Rural	11.0	17.1	71.3	0.6	100.0	94.1	6148
Zanzibar	8.1	52.4	37.6	1.9	100.0	96.6	238
Region							
Dodoma	8.2	14.5	77.2	0.1	100.0	96.3	623
Arusha	24.8	14.4	60.8	0.1	100.0	84.3	534
Kilimanjaro	6.1	21.0	71.7	1.1	100.0	96.9	368
Tanga	10.0	15.7	73.5	0.8	100.0	98.5	406
Morogoro	14.2	10.5	75.3	0.0	100.0	89.4	471
Coast	10.5	20.1	68.2	1.2	100.0	89.8	116
Lindi	6.9	14.7	76.6	1.7	100.0	93.0	178
Mtwara	6.3	20.1	73.1	0.5	100.0	97.7	208
Ruvuma	8.5	18.3	72.7	0.5	100.0	99.1	271
Iringa	5.2	18.6	74.4	1.8	100.0	94.5	439
Mibeya	10.9	14.7	71.8	2.6	100.0	94.9	375
Singida	11.8	18.3	69.7	0.2	100.0	93.4	306
Tabora	5.2	16.2	77.9	0.7	100.0	99.1	231
Rukwa	14.4	12.6	72.7	0.4	100.0	89.0	223
Kigoma	10.4	20.8	68.5	0.3	100.0	98.4	358
Shinyanga	10.4	17.7	71.8	0.1	100.0	96.8	791
Kagera	10.1	21.0	68.2	0.7	100.0	96.6	554
Mwanza	8.0	17.2	74.6	0.2	100.0	97.0	605
Mara	6.8	16.2	76.1	0.9	100.0	95.0	363
Mother's education							
No education	14.7	18.8	65.8	0.7	100.0	91.5	2841
Primary incomplete	8.8	18.7	71.7	0.8	100.0	96.8	1501
Completed primary	7.0	16.5	76.0	0.5	100.0	97.0	3448
Secondary/Higher	5.3	21.8	72.4	0.5	100.0	95.9	242
All births	10.0	17.8	71.5	0.6	100.0	95.0	8032

Note: Figures are for births in the period $1-59$ months preceding the survey.

For the majority of births (72 percent), the mothers received at least two doses of tetanus toxoid during pregnancy. However, 10 percent were not protected by any tetanus toxoid vaccination. Birth mothers 35 years or above and mothers of births of order 4 and above were less likely to receive tetanus vaccination.

The proportions of births where the mothers received no tetanus toxoid is similar in Tanzania mainland and Zanzibar. However, mothers in Zanzibar were much more likely to receive only one dose of tetanus toxoid, whereas their counterparts in Tanzania mainland were more likely to receive at least two doses. Tetanus vaccination status varied by mainland region. Ten regions had at least 10 percent of births with no tetanus toxoid injections during pregnancy at all. The highest proportions with no tetanus toxoid were observed in Arusha (25 percent of births), Rukwa (14 percent), and Morogoro (14 percent). However, in all regions more than 60 percent of all births in the five years preceding the survey received at least two doses of tetanus toxoid, but no region exceeded 80 percent coverage.

Vaccination status was found to be associated with education of mothers. The proportion of women who had live births and did not receive tetanus vaccination decreased steadily from 15 percent among women with no education to 5 percent among women with secondary education or above. This may be partly due to higher utilization of antenatal care among educated women (see Table 8.1).

For most births (95 percent) mothers had antenatal cards. In all categories of the background characteristics in Table 8.2, more than 90 percent had antenatal cards with the exception of four regions: Arusha, Rukwa, Morogoro, and Coast.

Table 8.3 presents the distribution of births in the five years preceding the survey by place of delivery. Slightly more than half of births took place in health facilities, whereas 46 percent took place at home.

The proportion of births delivered in health facilities decreased with increasing mother's age and birth order. Births in Zanzibar were considerably less likely to take place in health facilities than in mainland Tanzania. Within Tanzania mainland, births were much more likely to take place in health facilities in urban areas than in rural areas. Among the mainland regions home deliveries were most common in the Lake regions. More than three-quarters of births in Dar es Salaam, Ruvuma, and Kilimanjaro took place in health facilities. Births of educated women were more likely to take place in health facilities than those of uneducated women.

The largest differences can be observed by antenatal care attendance; among women not receiving antenatal care, 80 percent delivered at home; of women who made 1-3 antenatal visits during pregnancy, 55 percent delivered at home; and of women who made at least 4 visits, 40 percent delivered at home. In general, the proportion of all births taking place in health facilities (53 percent) was much lower than the proportion of births where the woman was reported to have received antenatal care during pregnancy (96 percent). These figures suggest that women seek antenatal care to get checked and if there are no complications they prefer to deliver at home.

In addition to the place of delivery, the TDHS collected data on the type of personnel assisting during delivery. This information is important because the nature of assistance, and hence the quality of care provided, depends on the competence of the service provider. Overall, 6 percent of all births were delivered without assistance; 27 percent of the births were delivered after being assisted by a relative or "other" (see Table 8.4). About 53 percent of all births were assisted by either doctors, trained nurse/midwife, or MCH aide. Traditional birth attendants assisted at 13 percent of all births. In Zanzibar, TBAs were the most common provider (64 percent of all births). In mainland Tanzania, TBAs were most common in Rukwa (32 percent of births), Iringa (30 percent), and Coast regions (23 percent). Traditional birth attendants were rarely mentioned as a source of assistance during delivery in Ruvuma, Mwanza, and Tabora (3 percent of births for each).

Table 8.3 Place of delivery

Percent distribution of births in the five years preceding the survey, by place of delivery, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Health facility	At home	Other	Don't know/ Missing	Total	Number of births
Mother's age at blrth						
<20	56.4	42.0	0.0	1.7	100.0	1472
20-34	52.6	45.4	0.0	2.0	100.0	5385
35+	47.8	50.5	0.1	1.6	100.0	1174
Birth order						
1	62.1	36.3	0.0	1.6	100.0	1795
2-3	52.5	45.3	0.1	2.1	100.0	2580
4.5	48.8	49.1	0.0	2.1	100.0	1642
$6+$	47.2	51.0	0.1	1.7	100.0	2014
Residence						
Mainland	53.2	44.8	0.0	1.9	100.0	7793
Dar es Salaam	85.5	14.1	0.0	0.3	100.0	373
Other urban	84.5	13.1	0.0	2.4	100.0	1273
Rural	44.7	53.3	0.1	2.0	100.0	6148
Zanzibar	32.6	67.4	0.0	0.0	100.0	238
Region						
Dodoma	59.3	40.2	0.0	0.6	100.0	623
Arusha	47.5	49.7	0.0	2.8	100.0	534
Kilimanjaro	75.7	21.4	0.0	2.9	100.0	368
Tanga	54.1	44.4	0.0	1.5	100.0	406
Morogoro	49.6	45.3	0.1	5.0	100.0	471
Coast	48.8	50.0	0.0	1.1	100.0	116
Lindi	65.9	30.1	0.4	3.5	100.0	178
Miwara	46.3	51.0	0.0	2.7	100.0	208
Ruvuma	81.5	16.3	0.0	2.2	100.0	271
Iringa	51.8	43.9	0.0	4.3	100.0	439
Mbeya	52.8	45.5	0.0	1.7	100.0	375
Singida	54.3	44.9	0.0	0.8	100.0	306
Tabora	66.7	30.1	0.0	3.2	100.0	231
Rukwa	45.7	52.0	0.0	2.4	100.0	223
Kigoma	42.8	55.7	0.0	1.4	100.0	358
Shinyanga	47.5	51.7	0.2	0.7	100.0	791
Kagera	39.0	60.0	0.0	1.0	100.0	554
Mwanza	43.0	55.9	0.0	1.1	100.0	605
Mara	35.0	62.1	0.1	2.8	100.0	363
Mother's education						
No education	38.3	60.2	0.1	1.4	100.0	2841
Primary incomplete	52.3	45.5	0.0	2.2	100.0	1501
Completed primary	62.5	35.2	0.0	2.3	100.0	3448
Secondary/Higher	81.3	18.3	0.0	0.4	100.0	242
Antenatal care visits						
0	11.4	79.7	0.2	8.7	100.0	288
$1-3$	43.6	55.1	0.0	1.3	100.0	1974
4+	57.9	40.4	0.0	1.7	100.0	5579
Don't know/Missing	53.5	42.6	0.4	3.4	100.0	191
All births	52.6	45.5	0.0	1.9	100.0	8032

Note: Figures are for births in the period 1-59 months preceding the survey.

Table 8.4 Assistance during delivery
Percent distribution of births in the five years preceding the survey, by type of assistance during delivery, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Attendant assisting during delivery ${ }^{1}$							Total	Number of births
	Doctor	$\begin{aligned} & \text { Trained } \\ & \text { nurse/ } \\ & \text { Midwife } \end{aligned}$	MCH Aide	$\begin{gathered} \text { Trad. } \\ \text { bitrh } \\ \text { attendant } \end{gathered}$	Relatived Oher	No one	Don't know/ Missing		
Mother's age at birth									
<20	6.6	41.1	8.9	12.5	27.5	3.3	0.2	100.0	1472
20-34	6.1	37.7	9.4	13.2	27.1	6.0	0.5	100.0	5385
35+	5.5	34.2	8.6	15.7	25.1	10.3	0.5	100.0	1174
Birth order									
1	8.0	45.7	8.5	10.6	24.7	2.1	0.3	100.0	1795
2-3	6.7	37.9	8.7	14.2	28.0	4.1	0.3	100.0	2580
4.5	4.6	35.1	9.3	13.6	29.6	7.3	0.5	100.0	1642
$6+$	4.9	32.8	10.4	14.7	25.3	11.3	0.6	100.0	2014
Residence									
Mainland	6.3	38.0	9.4	11.9	27.7	6.3	0.4	100.0	7793
Dar es Salaam	31.3	54.0	1.3	6.5	6.8	0.2	0.0	100.0	373
Other urban	12.4	68.3	5.6	3.7	8.5	1.4	0.1	100.0	1273
Rural	3.5	30.7	10.7	13.9	32.9	7.7	0.5	100.0	6148
Zanzibar	0.6	31.9	2.7	63.6	1.3	0.0	0.0	100.0	238
Reglon									
Dodoma	5.7	32.6	21.2	12.1	27.9	0.4	0.0	100.0	623
Arusha	11.2	36.0	2.3	19.8	27.8	1.9	1.1	100.0	534
Kilimanjaro	10.9	57.8	10.2	6.6	13.5	0.2	0.8	100.0	368
Tanga	3.1	30.6	22.1	15.7	28.3	0.0	0.2	100.0	406
Morogoro	8.0	38.4	5.9	15.9	28.6	2.9	0.3	100.0	471
Coast	15.6	34.2	4.2	23.0	22.0	0.3	0.8	100.0	116
Lindi	6.7	49.3	10.2	3.5	27.5	1.3	1.4	100.0	178
Mıwara	4.9	33.3	9.4	5.8	40.4	6.2	0.0	100.0	208
Ruvuma	6.6	55.8	19.8	2.6	14.5	0.5	0.2	100.0	271
Iringa	4.7	32.6	13.7	30.3	14.6	2.3	1.7	100.0	439
Mbeya	6.0	42.1	6.1	12.6	24.0	8.5	0.7	100.0	375
Singida	2.7	39.5	11.5	6.8	33.7	5.7	0.0	100.0	306
Tabora	3.3	50.3	14.1	3.1	26.4	2.8	0.0	100.0	231
Rukwa	2.8	28.0	11.7	31.6	22.5	2.2	1.2	100.0	223
Kigoma	2.4	30.6	9.0	10.3	40.7	6.4	0.6	100.0	358
Shinyanga	2.0	35.0	7.9	5.2	37.4	12.1	0.3	100.0	791
Kagera	2.2	32.7	4.4	15.9	27.4	17.3	0.0	100.0	554
Mwanza	2.5	36.0	4.9	3.0	37.4	16.3	0.0	100.0	605
Mara	3.6	30.6	2.2	11.7	34.5	16.9	0.5	100.0	363
Mother's education									
No education	3.1	27.1	7.9	16.7	33.9	10.7	0.7	100.0	2841
Primary incomplete	4.7	38.5	9.7	12.1	27.8	6.7	0.5	100.0	1501
Completed primary	8.4	44.6	10.5	11.5	22.4	2.5	0.2	100.0	3448
Secondary/Higher	18.9	61.8	3.1	11.1	4.7	0.0	0.4	100.0	242
Antenatal care visits									
None	1.8	8.0	1.2	18.8	48.1	13.7	8.4	100.0	288
$1-3$ visits	3.1	33.4	7.6	13.6	34.1	8.0	0.2	100.0	1974
4 or more visits	7.5	41.0	9.9	13.0	23.5	5.0	0.1	100.0	5579
Don't know/Missing	3.3	34.9	18.3	14.5	20.1	8.8	0.2	100.0	191
Total	6.1	37.8	9.2	13.4	26.9	6.1	0.4	100.0	8032

Note: Figures are for births in the period $1-59$ months preceding the survey.
'If the respondent mentioned more than one attendant, only the most qualified attendant is considered.

In several subgroups more than 10 percent of births were delivered without any type of assistance. These included births to women 35 years or above, four Lake regions, births to women with no formal education, and births that had received no antenatal care. Births of order of four or more were also more likely to be delivered without any assistance.

Only 2.5 percent of births or 4.8 percent of all deliveries in health facilities were delivered by caesarean section.

8.2 Vaccinations

To obtain information about vaccination coverage, the TDHS collected information on vaccination status of all children borm in the preceding five years, although data presented here are restricted to children who were alive at the time of the survey. The immunization programme in Tanzania is implemented by the Ministry of Health through the Expanded Programme of Immunization (EPI) that began in 1975. By 1986, operation of the programme was established throughout the country (Ministry of Health, 1989). The EPI follows the World Health Organisation's (WHO) guidelines for vaccinating children. To be considered fully vaccinated, a child should receive the following vaccinations: BCG, measles, and three doses each of DPT and polio. BCG is given at birth for protection against tuberculosis; DPT is given for protection against diphtheria, pertussis, and tetanus. In Tanzania, the DPT and polio are given at one, two, and three months of age and measles at 9 months. Thus, according to the recommended schedule, children should have completed all vaccinations before their first birthday.

Information on vaccination status was obtained from vaccination cards shown to the interviewers during the survey and from mothers' reports. All MCH clinics in Tanzania provide "road to health" cards (MCH form No. 3), which included dates of vaccinations. If these cards were available, the interviewers recorded vaccination dates directly. If a vaccination card was presented, but a vaccine had not been recorded on the card as being given, the mother was asked to recall whether that particular vaccine had been given. If there was no card at all for the child, the mother was asked to recall whether the child had received BCG, polio (including the number of doses), or measles vaccinations. For children without a written record, DPT coverage was not asked about but was assumed to be the same as the mother's report for polio vaccine, since polio and DPT are usually given at the same time.

Table 8.5 shows the vaccination coverage among 1616 children aged $12-23$ months according to the source of the information used to determine coverage. Overall, 96 percent of children aged 12-23 months were reported by their mother to have had MCH cards. However, interviewers managed to obtain the cards and extract vaccination information from only 78 percent of children. Mother's information was used to ascertain vaccination status for an additional 22 percent of children who had no cards. As part of the EPI evaluation, immunization coverage surveys were conducted by the Ministry of Health in collaboration with UNICEF and DANIDA in 1989 and 1991. Card retention among children covered by these surveys was 95 percent in 1989 and 90 percent in 1991.

The TDHS findings indicate overall BCG vaccination coverage against tuberculosis of 95 percent (see also Figure 8.2). This coverage was ascertained by vaccination card for 77 percent of the children and by mother's report for 18 percent of children without vaccination card. Almost all children (93 percent) received the BCG vaccine within the first year of age, as indicated by the coverage estimate by 12 months in Table 8.5.

Table 8.5 Vaccinations by source of information
Percentage of children 12-23 months who had received specific vaccines at any time before the survey and the percentage vaccinated by 12 months of age, by whether the information was from a vaccination card or from the mother, Tanzania 1991/92

Source of information	Percentage of children who received:										
	BCG	DPT			Polio			Measles	All^{1}	None	Number of children
		1	2	$3+$	1	2	$3+$				
Vaccinated at any time before the survey											
Vaccination card	77.3	76.7	74.4	69.2	76.1	73.0	66.4	66.1	61.3	0.3	1616
Mother's report	18.1	17.4	16.1	10.6	17.4	16.1	10.6	15.1	9.8	3.5	1616
Either source	95.4	94.1	90.4	79.8	93.6	89.1	77.1	81.2	71.1	3.8	1616
Vaccinated by 12 months of age	92.7	91.9	86.4	72.6	91.3	83.8	68.3	68.9	56.4	5.5	1616

Note: The DPT coverage rate for children without a written record is assumed to be the same as that for polio vaccine since mothers were specifically asked whether the child had received polio vaccine. For children whose information was based on the mother's report, the proportion of vaccinations given during the first year of life was assumed to be the same as for children with a written record of vaccination.
${ }^{1}$ Children who are fully vaccinated (i.e., those who have received BCG, measles, and three doses of DPT and polio).

Figure 8.2
Vaccination Coverage Among Children Age 12-23 Months

Note: Based on health card information and mothers' reports.

Coverage of the first dose of polio and the first dose of DPT were about the same as for BCG. Based on both vaccination card and mother's information, 94 percent of children had received the first dose of polio and DPT vaccine, and 91 percent of children received these vaccinations by 12 months of age. However, coverage of second and third doses of these vaccinations decreased; 77 percent for polio3 and 80 percent for DPT3. Drop-out rates between the first and third doses of DPT (and polio) were 18 and 15 percent, respectively. ${ }^{1}$

Eighty-one percent of children had received measles vaccination, and 69 percent had been vaccinated by 12 months of age. The TDHS found that 71 percent were fully vaccinated and slightly more than a half (56 percent) of children had received all recommended vaccinations during the first year of life. Only 4 percent of children 12-23 months did not receive any vaccination at all.

Compared to the EPI immunization coverage surveys in 1989 and 1991 (Ministry of Health, 1989, 1991), vaccination coverage was generally higher in the 1989 survey than in the 1991 and TDHS surveys (see Figure 8.3). The latter two surveys have comparable results, though a slight increase in coverage was observed. The proportion of fully vaccinated children was 71 percent, while in the EPI 1991 survey it was 62 percent. It is noted that TDHS data do not exclude measles vaccinations given before the recommended age of 9 months and DPT/polio vaccinations given at intervals of less than 4 weeks.

In addition to data from multiple surveys, coverage trends can be assessed with TDHS data. Data on vaccination status of children 12-59 months allow for an evaluation of coverage by 12 months among different age groups. Table 8.6 shows the percentage of children by age group who had been vaccinated by 12 months. The coverage estimates, based on card and mother's recall, for each age group refer to a specific

[^7]Table 8.6 Vaccinations in the first year of life
Percentage of children one to four years of age for whom a vaccination card was shown to the interviewer and the percentage vaccinated for BCG, DPT, polio, and measles during the first year of life, by current age of the child, Tanzania 1991/92

	Current age of child in months				All children 12-59
Vaccine	$12-13$	$24-35$	$36-47$	$48-59$	months

${ }^{\text {a }}$ Information was obtained either from a vaccination card or from the mother if there was no written record. For children whose information was based on the mother's report, the proportion of vaccinations given during the first year of life was assumed to be the same as that for children with a written vaccination record.
${ }^{6}$ The DPT coverage rate for children without a written record is assumed to be the same as that for polio vaccine, since mothers were specifically asked whether the child had received polio vaccine.
${ }^{5}$ Children who have received BCG, measles, and three doses of DPT and polio vaccines.
period of time before the survey. For instance, coverage by 12 months among children 12-23 months roughly refers to the programme performance the year before the survey (i.e., 1991, since the mid-point data of the TDHS was December 1991), and data on children 24-35 months refer to 1990 etc. Hence, these results may be used to assess immunization coverage during the first year of life for the period 1988 to 1991. Several points emerge from Table 8.6. First, cards were less likely to be shown for older children, making those coverage estimates somewhat less accurate. All vaccines showed an increase of about 10 percent during 1988-91, with the exception of BCG and the third dose of polio. These findings indicate that the proportion of children vaccinated during the first year of life has been increasing over the last four years. Figure 8.4 displays the trend in vaccination coverage of measles and first and third doses of DPT, using the TDHS data. There is an increasing proportion of children receiving vaccinations during the first year of life. During the same time period, the proportion of children not receiving any vaccination decreased from 15 percent to 6 percent.

Table 8.7 shows the distribution of vaccination coverage among children $12-23$ months old by background variables. Vaccination status does not differ appreciably by the sex or birth order of the child. Vaccination coverage was relatively higher in Zanzibar and urban areas than in mainland Tanzania and rural areas, respectively. Less than half of children aged 12-23 months were fully vaccinated in Shinyanga and Mara. Kilimanjaro region had the highest vaccination coverage. However, numbers of children are small in most regions. (Note: the unweighted number of observations is larger than the weighted number of observations in several subgroups in Table 8.7.) The coverage of all vaccinations was found to increase with increasing level of education of the mother.

Table 8.7 Vaccinations by background characteristics
Percentage of children 12-23 months who had received specific vaccines by the time of the survey (according to the vaccination card or the mother's report) and the percentage with a vaccination card, by selected background characteristics, Tanzania 1991/92

Background characteristic	Percentage of children who received:										Percentage with a card	Number of children
		DPT			Polio			Measles	All ${ }^{1}$	None		
		1	2	$3+$	1	2	$3+$					
Sex												
Male	95.5	94.7	90.4	78.8	94.3	88.6	75.2	81.3	69.1	3.7	79.4	810
Fermale	95.4	93.5	90.5	80.9	92.8	89.6	78.9	81.1	73.1	3.9	76.9	806
Birth order												
1	97.5	95.8	92.6	80.9	95.7	91.4	76.2	88.2	72.2	2.5	74.8	340
2-3	96.4	95.8	93.3	82.7	95.4	92.4	80.7	83.7	74.4	3.2	77.9	526
4-5	94.8	92.5	87.2	77.6	91.2	85.1	74.8	75.6	67.7	4.0	79.3	332
$6+$	93.0	91.9	87.6	77.2	91.3	86.3	75.0	76.7	68.7	5.5	80.4	418
Residence												
Mainland	95.3	93.9	90.2	79.4	93.4	88.8	76.6	81.0	70.7	3.9	77.7	1565
Dar es Salaam	(98.3)	(98.3)	(96.1)	(85.0)	(98.3)	(96.1)	(82.6)	(87.0)	(77.4)	(1.7)	(59.1)	55
Other urban	99.5	96.7	96.0	89.4	96.9	95.9	88.1	92.3	84.7	0.5		273
Rural	94.2	93.1	88.6	77.0	92.4	86.9	73.7	78.3	67.3	4.8	76.7	1237
Zanzibar	100.0	100.0	99.2	92.6	100.0	99.2	92.6	86.5	84.2	0.0	91.0	51
Requon												
Dodoma	96.3	96.3	94.7	85.6	96.3	95.5	85.6	90.9	82.4	3.7	85.9	121
Arusha	93.4	82.6	80.9	77.0	81.9	80.1	67.4	70.9	59.3	6.6	73.8	124
Kilimanjaro	100.0	100.0	98.8	93.2	100.0	98.8	93.2	93.0	88.6	0.0	71.2	79
Tanga	92.9	94.8	86.3	76.7	91.0	85.0	75.3	78.6	67.5	3.8	72.4	78
Morogoro	92.0	92.0	89.6	84.1	92.0	87.9	81.2	84.4	77.2	8.0	79.4	104
Coast	96.8	94.8	87.9	76.2	94.8	87.9	73.0	77.3	67.2	3.2	78.7	21
Lindi	98.2	98.2	98.2	89.2	98.2	98.2	87.3	88.7	81.5	1.8	91.6	35
Mtwara	98.0	98.0	96.1	93.9	98.0	96.1	93.9	88.1	86.2	2.0	84.2	51
Ruvuma	98.2	97.5	97.5	90.5	95.7	93.3	89.0	90.7	85.8	1.8	87.7	54
Iringa	95.3	91.8	90.9	75.0	91.8	90.3	66.0	83.8	61.5	4.7	66.3	114
Mbeya	100.0	100.0	95.0	92.4	100.0	95.0	89.0	91.6	87.2	0.0	76.1	81
Singida	96.7	94.5	89.2	79.3	94.5	89.2	79.5	81.5	73.6	3.3	90.8	59
Tabora	100.0	98.3	97.2	86.6	93.9	92.8	83.8	79.8	75.1	0.0	91.4	43
Rukwa	98.7	95.9	93.3	80.7	94.7	87.1	76.2	76.8	68.7	1.3	81.3	42
Kigoma	98.0	97.2	95.9	91.3	97.1	91.7	83.1	90.4	78.6	2.0	90.6	65
Shinyanga	89.3	88.1	77.7	53.6	88.8	76.3	57.4	65.7	47.0	9.2	72.3	136
Kagera	96.7	97.0	95.9	84.1	95.2	92.8	80.2	81.8	74.7	2.2	77.3	123
Mwanza	91.0	92.3	85.3	71.2	92.3	82.9	68.1	72.9	61.5	5.1	77.5	119
Mara	92.0	90.9	79.9	56.1	90.0	80.3	54.3	63.3	48.1	5.0	74.4	62
Mother's education												
No education	90.9	88.3	82.9	70.9	87.8	81.1	67.1	70.5	60.0	7.9	74.2	539
Primary incomplete	94.7	93.8	92.3	80.8	93.3	90.9	79.5	81.7	73.2	4.1	79.5	292
Completed primary	98.7	98.1	94.6	85.7	97.5	93.6	82.9	88.0	77.9	1.0	80.9	736
Secondary/Highet	100.0	100.0	100.0	83.7	100.0	100.0	83.7	93.8	79.2	0.0	72.2	48
All children	95.4	94.1	90.4	79.8	93.6	89.1	77.1	81.2	71.1	3.8	78.1	1616

Note: The DPT coverage rate for children without a written record is assumed to be the same as that for polio vaccine since mothers were specifically asked whether the child had received polio vaccine. Figures in parentheses are based on 25 to 49 cases.
${ }^{1}$ Children who are fully vaccinated (i.e., those who have received BCG, measles, and three doses of DPT and polio).

8.3 Acute Respiratory Infection

Acute respiratory infection (ARI) is one of the major causes of morbidity and mortality in children in Tanzania. Common symptoms associated with severe ARI include fever, cough, and difficult or rapid breathing. However, fever may be due to other infections, such as malaria. Typically, ARI involves the upper respiratory tract and may progress to involve the lower respiratory tract, leading to lung infection. The most common lower respiratory infection is pneumonia which is associated with high mortality risks. Early diagnosis and treatment with antibiotics can prevent a large proportion of pneumonia deaths.

To estimate the magnitude of ARI, mothers were asked if their children had experienced coughing, accompanied by difficult or rapid breathing, during the two weeks preceding the survey. The aim of these questions is to capture children with ARI and needing assessment by a health worker. In other words, children with these symptoms should be taken to a health facility. As Table 8.8 shows, 8 percent of children under five years of age had experienced cough and difficult or rapid breathing at some time in the two weeks preceding the survey. Of these children, 65 percent were seen at a health facility, where 22 percent reportedly

Table 8.8 Prevalence and rreatment of acute respiratory infection

Percentage of children under five years who were ill with a cough accompanied by rapid breathing during the two weeks preceding the survey, and the percentage of ill children who were treated with specific remedies, by selected background characteriscics, Tanzania 1991/92

Background characteristic	Among children with cough and rapid breathing									$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { children } \end{aligned}$
	Percentage of children with cough and rapid breathing	Percentage	Percentage treated with:							
		a health facility or provider ${ }^{1}$	AnLibiouc pill or syrup	Injection	$\begin{aligned} & \text { Cough } \\ & \text { syrup } \end{aligned}$	Home remedy	Other	None	Don't know/ Missing	
Age of chlld (months)										
<6	6.2	48.9	12.0	16.5	38.0	6.6	49.3	16.8	0.6	756
6-11	16.2	73.8	26.1	29.9	49.5	5.2	53.5	3.3	0.6	798
12-23	11.6	71.1	22.8	23.6	55.6	6.2	51.4	4.7	0.5	1616
24-35	6.1	65.4	15.2	23.2	51.8	6.7	42.5	13.0	0.0	1425
36-47	6.4	48.8	23.6	22.7	48.9	6.0	57.5	4.5	3.9	1281
48-59	4.6	61.7	23.5	31.9	36.9	2.9	33.5	13.9	4.4	1296
Sex of child										
Male	8.7	65.5	20.4	29.4	46.8	4.5	54.7	7.8	1.1	3571
Female	7.7	64.6	23.2	20.2	52.6	7.1	43.6	7.0	1.5	3600
Birth order										
1	8.1	68.5	13.4	19.4	57.0	8.3	43.5	8.2	3.1	1557
2-3	8.8	64.3	28.4	23.0	48.7	5.2	45.3	7.8	1.1	2332
4-5	8.6	56.2	24.3	26.4	35.8	4.6	58.4	8.9	0.0	1488
$6+$	7.2	71.9	16.6	32.5	57.3	5.2	53.2	4.8	1.2	1795
Residence										
Mainland	8.2	64.8	21.6	25.2	49.2	5.6	49.5	7.4	1.4	6949
Dar es Salaam	11.4	(62.6)	(52.0)	(37.4)	(69.2)	(0.0)	(62.7)	(2.8)	(0.0)	322
Other urban	11.4	77.9	13.4	30.2	55.8	2.3	50.7	3.1	3.1	1110
Rural	7.4	60.9	21.4	22.6	45.3	7.2	47.9	9.2	0.9	5517
Zanzibar	8.6	(73.7)	(26.7)	(19.2)	(60.2)	(7.9)	(49.5)	(7.8)	(0.0)	222
Education										
No education	6.8	60.7	16.1	26.0	46.0	8.4	47.6	11.6	2.2	2532
Primary incomplete	7.2	65.1	19.0	22.4	58.0	9.5	52.9	5.6	0.8	1324
Completed primary	9.9	66.5	25.3	25.0	48.7	3.3	48.8	5.8	1.0	3093
Secondary/Higher	7.3	*	*	*	*	*	*	*	*	223
Total	8.2	65.1	21.7	25.0	49.5	5.7	49.5	7.5	1.3	7171

[^8]received an antibiotic, 25 percent received injections, and 50 percent received cough syrup. It should be noted that it is usually difficult for mothers to distinguish antibiotic syrup from normal cough syrup. Also, some injections reported here may have been antibiotics. Thus, these categories are not mutually exclusive. Only 6 percent received home remedy (which includes drugs that were available at home).

The prevalence of ARI was higher from 6 to 23 months of age and in urban areas (including Dar es Salaam). Children in these categories were also more likely to be taken to a health facility (more than 70 percent of children taken).

8.4 Fever

Malaria is a leading cause of mortality and morbidity among children in Tanzania. Since the major manifestation of malaria is fever, mothers were asked whether their children had fever in the two weeks preceding the survey and what was done to treat it .

Table 8.9 shows that 31 percent of children under five years of age were reported to have had fever and over half of sick children (57 percent) were taken to a health facility for treatment. Among children with fever, 50 percent received antimalarials, 16 percent received antibiotics, and 16 percent were given injections.

Table 8.9 Prevalence and treatment of fever
Percentage of children under five years who were ill with a fever during the two weeks preceding the survey, and the percentage of ill children who were treated with specific remedies, by selected background characteristics, Tanzania 1991/92

Background characteristic	Percentage of children with fever	Among children with fever								Number of children
		Percentage taken to a health facility or provider ${ }^{1}$	Percentage treated with:							
			Antimalarial	Antibiotic	Injection	Home remedy	Other	None	Don't know/ Missing	
Age of child (months)										
<6	27.4	57.0	40.5	9.4	11.9	4.9	54.1	11.4	0.9	756
6-11	43.8	60.6	54.5	18.7	19.2	4.7	54.2	6.0	2.4	798
12-23	40.8	60.8	52.2	15.8	15.2	6.0	47.2	8.7	0.7	1616
24-35	30.3	56.3	49.7	15.6	18.1	4.4	47.2	10.6	0.7	1425
36-47	25.5	50.7	49.0	15.1	14.4	6.2	48.6	7.8	1.5	1281
48-59	19.4	53.4	48.2	16.8	16.1	6.4	43.4	10.9	1.7	1296
Sex of child										
Male	30.7	56.3	47.1	15.9	17.0	4.7	51.8	8.7	1.2	3571
Female	31.4	58.1	52.9	15.4	15.2	6.2	45.8	9.2	1.3	3600
Birth order										
1	28.4	63.0	53.0	14.4	14.7	5.6	51.2	7.0	2.7	1557
2-3	32.2	59.0	48.8	17.4	13.9	4.2	48.6	11.3	0.5	2332
4-5	31.1	53.7	44.3	16.7	18.0	6.6	48.1	8.1	1.5	1488
6+	31.8	53.2	54.1	13.4	18.5	6.1	47.4	8.2	0.8	1795
Residence										
Mainland	30.8	56.5	49.5	14.6	16.4	5.5	49.0	9.2	1.3	6949
Dar es Salaam	38.9	69.1	59.5	34.6	21.7	0.0	60.9	0.7	3.2	322
Other urban	35.4	62.7	48.9	10.1	23.1	1.1	60.7	3.2	1.0	1110
Rural	29.4	54.0	48.8	14.2	14.3	7.0	45.2	11.3	1.2	5517
Zanzibar	38.3	76.5	65.1	41.6	8.8	4.2	42.2	3.1	0.6	222
Education										
No education	30.1	50.5	49.7	14.3	14.5	8.6	42.9	12.1	0.7	2532
Primary incomplete	- 31.8	49.7	51.4	11.7	12.9	6.9	51.8	8.0	1.7	1324
Completed primary	- 31.6	63.7	49.3	17.5	18.0	2.8	52.0	7.3	1.5	3093
Secondary/Higher	29.7	88.2	57.0	29.2	25.1	0.0	47.3	3.8	1.0	223
Total	31.0	57.2	50.1	15.6	16.1	5.5	48.7	9.0	1.2	7171

[^9]Fever was more prevalent in the 6 to 23 months age group than in any other age group. Children of more educated women were more likely to be taken to the health facility and given antimalarials, antibiotics, or injections than those of women with no education.

8.5 Diarrhoea

Diarrhoea is a major cause of morbidity and mortality among children in Tanzania. Thirteen percent of children under five years of age were reported to have diarrhoea during the two weeks before the survey, including 2 percent with bloody diarhoea (see Table 8.10). Four percent were still having an episode of diarrhoea at the time of the survey (diarrhoea within the last 24 hours).

As for ARI and fever, children aged 6 to 23 months were more likely to have a diarthoeal episode in the two weeks preceding the survey; prevalence is twice as high among these children as all other children. This peak in diarrhoea prevalence is partly due to the hazards associated with the weaning period. Children of women with secondary education and above had lower prevalence of diarrhoea than those of less educated women.

Dehydration is a major complication of diarrhoea and is the most important cause of mortality among children with acute diarrhoea. Oral rehydration therapy (ORT) is recommended for prevention or treatment of dehydration and includes a solution prepared from commercially produced packets of oral rehydration salts (ORS) or homemade fluids prepared from sugar, salt, and water. In Tanzania, the use of ORS and homemade fluids is being promoted by the Ministry of Health. Increasing the amount of any other type of fluids during a diarrhoea episode can also be considered ORT.

Table 8.10 Prevalence of diamhoea
Percentage of children under five years who had diarrhoea and diarrhoea with blood in the two weeks preceding the survey, and the percentage of children who had diarrhoea in the preceding 24 hours, by selected background characteristics, Tanzania 1991/92

Background characteristic	Diarrhoea in the preceding 2 weeks ${ }^{1}$		$\begin{aligned} & \text { All } \\ & \text { diarhoea } \\ & \text { in the } \\ & \text { preceding } \\ & 24 \text { hours } \end{aligned}$	Number of children
	$\overline{\mathrm{All}}$	Diarrhoea with blood		
Child's age (months)				
< 6	11.5	0.7	4.0	756
6-11	26.1	3.5	9.3	798
12-23	21.1	2.5	6.9	1616
24.35	10.5	2.4	3.5	1425
36-47	7.4	2.0	2.4	1281
48-59	4.3	0.7	1.1	1296
Sex				
Male	12.9	2.1	4.3	3571
Female	13.2	1.9	4.3	3600
Birth order				
1	14.5	2.0	4.7	1557
2-3	12.6	1.9	4.2	2332
4-5	13.0	2.0	4.6	1488
$6+$	12.5	2.1	3.9	1795
Residence				
Mainland	13.1	2.0	4.2	6949
Dar es Salaam	12.0	3.0	2.3	322
Other urban	15.9	1.9	4.8	1110
Rural	12.6	2.0	4.1	5517
Zanzibar	12.7	0.4	9.5	222
Reglon				
Dodoma	17.0	0.1	3.2	532
Arusha	23.3	4.4	9.0	503
Kilimanjaro	10.8	0.9	2.8	348
Tanga	12.3	1.6	3.6	364
Morogoro	22.6	3.9	3.7	394
Coast	18.3	3.4	6.0	102
Lindi	17.8	3.0	6.7	157
Miwara	10.4	1.8	3.3	186
Ruvuma	10.4	0.5	2.5	243
Iringa	13.5	2.4	3.4	401
Mbeya	12.2	3.8	4.7	347
Singida	20.8	2.2	5.6	282
Tabora	6.5	0.7	2.1	215
Rukwa	13.7	1.8	4.7	205
Kigoma	11.9	1.2	4.8	319
Shinyanga	8.4	1.8	4.5	709
Kagera	6.1	0.9	2.9	482
Mwanza	7.7	2.2	3.7	539
Mara	11.1	1.9	3.9	300
Mother's education				
No education	12.2	1.7	4.5	2532
Primary incomplete	11.3	2.6	3.8	1324
Completed primary	15.0	2.1	4.5	3093
Secondary/Higher	7.4	0.2	2.8	223
All children	13.1	2.0	4.3	7171

[^10]In TDHS, most mothers (93 percent) who gave birth in the previous five years knew about ORS (see Table 8.11). The level of knowledge did not change significantly with age of the mothers. Women with no education had slightly lower knowledge of ORS than educated women. Two-thirds of mothers reported to have ever used ORS. Younger women and those with no education were less likely to have ever used ORS.

Table 8.11 Knowledge and use of ORS packets
Percentage of mothers with births in the five years preceding the survey who know about and have ever used ORS packets, by selected background characteristics, Tanzania 1991/92

| Background
 characteristic | Know
 about ORS
 packets | Have ever
 used ORS
 packets |
| :--- | :---: | :---: | | Number |
| :---: |
| of |
| mothers |

Age			
15-19	89.2	47.6	507
20-24	92.2	63.1	1380
25-29	96.1	70.5	1326
30-34	93.5	73.2	890
35+	91.5	72.3	1209
Residence			
Mainland	92.8	67.0	5166
Dar es Salaam	89.4	68.2	276
Other urban	95.9	71.3	914
Rural	92.3	65.9	3976
Zanzibar	98.8	76.2	146
Region			
Dodoma	98.0	64.5	410
Arusha	90.7	62.5	366
Kilimanjaro	95.2	71.1	249
Tanga	85.3	64.6	283
Morogoro	94.5	56.3	328
Coast	94.6	64.9	81
Lindi	97.9	64.3	133
Mtwara	97.6	74.6	160
Ruvuma	97.8	78.2	181
Iringa	95.7	71.5	313
Mbeya	95.5	72.9	258
Singida	97.2	70.5	205
Tabora	97.6	81.6	149
Rukwa	94.5	67.5	142
Kigoma	90.8	64.3	222
Shinyanga	85.6	61.6	487
Kagera	91.6	66.7	327
Mwanza	89.5	65.1	365
Mara	93.1	70.5	230
Education			
No education	88.6	63.0	1834
Primary incomplete	94.0	71.2	987
Completed primary	95.5	68.0	2322
Secondary/Higher	98.6	79.7	169
All mothers	93.0	67.2	5312

Note: Figures include mothers who have given ORS for diarthoea during the preceding two weeks, although they were not asked about knowledge of ORS packets.

Diarrhoea treatment practices of children who had diarrhoea in the two weeks preceding the survey is shown in Table 8.12 and Figure 8.5. About 60 percent of children with diarrhoea were taken to a health facility for treatment. Children under 6 months of age and those of uneducated mothers were less likely to be taken to the health facility for diarrhoea treatment. Over half of children (57 percent) were given a solution prepared from ORS packets, while 19 percent received homemade solution of sugar, salt, and water. The use of homemade solution was low probably because many mothers do not know how to prepare the solution or prefer to go to a health facility. Over a quarter (28 percent) of children with diarrhoea were not given either solution nor did they receive an increased amount of fluids. Use of ORS was more common among educated women, with less educated women more likely to use homemade solution. Overall, about a third (30 percent, including those increasing breastfeeding) of children received increased fluids during the recent episode of diarthoea. Children of educated mothers were much more likely to have increased fluid intake during diarthoea attack (68 percent).

Table 8.12 Treatment of diarrhoea

Percentage of children under five years who had diarrhoea in the two weeks preceding the survey who were taken for reatment to a health facility or provider, the percentage who received oral rehydration therapy (ORT), the percentage who received increased fluids, the percentage who received neither ORT nor increased fluids, and the percentage receiving other treatments, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Percentage taken to a health facility or provider ${ }^{1}$	Oral rehydration therapy (ORT)		Percentage receiving increased fluids	Percentage receiving neither ORT nor increased fluids	Percentage receiving other treatments:					Number of children with diarthoea
		ORS packets	RHF			Antibiotics	Injection	Home remedy/ Other	None	Missing	
Age of child (months)											
<6	44.5	47.3	20.2	33.4	33.9	14.5	0.8	20.4	16.7	0.0	87
6-11	64.7	65.0	18.2	34.1	22.3	30.5	7.7	18.5	11.1	0.5	208
12-23	63.2	57.5	20.4	27.7	28.5	14.0	5.0	20.1	12.1	0.0	341
24-35	59.9	54.3	18.2	29.6	31.4	24.3	1.6	27.2	14.0	0.5	149
36-47	51.1	54.7	18.8	25.1	26.3	15.8	3.1	13.3	9.3	1.9	95
48-59	54.4	56.7	13.6	39.5	32.7	29.9	4.9	16.6	15.6	1.0	55
Sex of child											
Male	56.8	55.8	20.8	30.4	29.0	20.8	1.9	17.9	13.6	0.8	460
Fermale	62.2	59.0	17.2	30.4	27.2	20.2	6.9	22.0	11.5	0.1	476
Birth order											
1	64.2	61.1	16.7	33.8	26.0	21.7	8.0	24.4	12.6	0.0	226
2.3	62.6	59.8	17.2	26.9	29.1	22.8	5.5	18.1	10.0	0.0	293
4-5	55.9	56.6	22.4	33.0	25.2	19.1	1.1	18.2	11.3	0.3	193
$6+$	53.8	51.1	20.7	29.4	31.4	17.4	2.5	19.5	16.9	1.6	224
Residence											
Mainland	59.2	57.5	19.1	30.3	27.8	20.3	4.6	20.3	12.3	0.4	908
Dar es Salaam	(62.1)	(30.9)	(42.7)	(34.8)	(34.0)	(21.8)	(5.5)	(21.1)	(11.8)	0.0	39
Other urban	71.9	60.5	19.7	42.2	24.0	29.5	16.3	18.7	8.6	0.4	176
Rural	55.9	58.2	17.6	27.0	28.4	17.9	1.6	20.6	13.3	0.5	693
Zanzibar	69.0	53.3	15.6	33.7	37.3	25.4	0.0	10.4	20.6	0.0	28
Education											
No education	53.8	54.8	14.4	20.9	34.0	17.7	1.8	22.2	15.4	1.1	308
Primary incomplete	te 60.7	51.7	24.4	38.0	22.8	15.5	4.6	16.7	11.9	0.0	149
Primary completed	d 62.1	60.1	20.7	32.9	26.3	22.6	4.8	20.2	10.9	0.2	462
Secondary/Higher	85.4	81.5	5.8	68.2	16.4	58.1	44.3	2.5	11.2	0.0	16
Total	59.5	57.4	19.0	30.4	28.1	20.5	4.5	20.0	12.5	0.4	936

Note: Figures are for children born in the period 1-59 months preceding the survey. Oral rehydration therapy (ORT) includes solution prepared from ORS packets, and recommended home fluid (sugar-salt-water solution). Increased fluids includes increased frequency of breasfeeding. Rates shown in parentheses are based on 25-49 women.
${ }^{1}$ Includes health post, health centre, hospital, and private doctor.

Figure 8.5
 Percentage of Children Age 1-59 Months Who Received Treatment for Diarrhoea in the Two Weeks Preceding the Survey by Type of Treatment

Use of injections in the treatment of diarrhoea was very low (5 percent). Although ORS is generally accepted as a standard modern treatment of diarrhoea, one-fifth (21 percent) of children with diarrhoea were given antibiotic treatment. In some cases this may have been justified. For instance, 2 percent of children reportedly had diarrhoea with blood during the 2 weeks preceding the survey, which requires antibiotic treatment. However, the proportion receiving antibiotics is much larger, which indicates that there is a need for educating health workers about appropriate treatment of diarrhoea. Over half the children of educated mothers (58 percent) were given antibiotics. It is possible that educated mothers are more likely to request the health workers to provide antibiotics or to buy antibiotics from private drug stores. Many drug stores in Tanzania sell drugs, including antibiotics, without a medical prescription. Twenty percent of children were given home remedies other than the recommended home solution.

Continuing or increasing breastfeeding during diarrhoea is a recommended practice. About 79 percent of breastfed children who had diartioea were breastfed by their mothers at the usual frequency (Table 8.13). Only 8 percent of children had their breastfeeding frequency increased, and 9 percent had their frequency reduced.

Table 8.13 Feeding practices during diarrhoea

Feeding practices among children under five years who had diarrhoea in the two weeks preceding the survey, Tanzania 1991/92

Feeding practices	Percent
Breastfeedlng frequency	
Same as usual	79.3
Increased	7.5
Reduced	9.4
Stopped	0.4
Don't know/missing	3.4
No breastfeeding	27.4
\quad Number of children	831
Amount of fluids given	
Same as usual	57.7
More	27.2
Less	13.3
\quad Don't know/missing	1.9
Number of children with diarthoea	936

Note: Figures are for children born in the period $1-59$ months preceding the survey. ${ }^{1}$ Applies only to children who are still breastfed.

CHAPTER 9

MATERNAL AND CHILD NUTRITION

This chapter focuses on several aspects related to the nutritional status of mothers and children under five years. The TDHS data allow an assessment of infant feeding practices (including breastfeeding practices, introduction of supplementary weaning foods, and use of feeding bottles), birth weight of newborns, child anthropometric status (based on height and weight measurement of the respondent's children under the age of five years), and mother's anthropometric status.

9.1 Breastfeeding and Supplementation

Breastfeeding practices and introduction of supplementary foods are important determinants of the health and nutritional status of children, particularly those below the age of two years. Many studies have shown the beneficial effects of breastfeeding on nutritional status, morbidity, and mortality of young infants. Breastfeeding also has an indirect effect on postpartum fertility of the mother. More frequent breastfeeding for longer durations is associated with longer periods of postpartum amenorrhoea. Longer periods of postpartum amenorrhoea are related to longer birth intervals, and thus lower fertility levels.

Almost all children born in the five years before the survey (98 percent) were breastfed for some period of time (Table 9.1). The proportion of children ever breastfed was high across all regions and did not vary significantly by other background characteristics.

Early initiation of breastfeeding is beneficial for mother and child. From the mother's perspective early sucking stimulates the release of a hormone that helps the uterus to maintain a contracted state. From the child's perspective the first breast milk (colostrum) is important, since it is rich in antibodies. About 44 percent of children were put to the breast within one hour of birth and 82 percent within the first day. Women in Zanzibar were more likely to start breastfeeding within one hour of birth than their counterparts on Tanzania mainland. Women in Tanga, Coast, and Shinyanga were less likely to start breastfeeding within the initial hour after birth than in other regions.

Mothers were asked about the current (last 24 hours preceding the interview) breastfeeding status of all living children under five years. The results are presented in Table 9.2. Although exclusive breastfeeding is recommended for the first 4-6 months of life, only 43 percent of children 0-1 months received breast milk only. The proportion of children exclusively breastfed declined further at 2-3 and 4-5 months to 24 and 8 percent, respectively. Many young infants appeared to receive water only in addition to breast milk in Tanzania. This practice, often referred to as full breastfeeding (breastfeeding with or without plain water), is common in many parts of Africa, and has no biomedical benefits. However, it does pose an additional risk of transmitting infections and may also interfere with breastfeeding. More than one-third of children 0-1 months received breast milk with water, and 29 and 16 percent were in this feeding category at 2-3 and 4-5 months, respectively.

After 4-6 months of age, exclusive breastfeeding is not sufficient for the child and introduction of supplementary foods is required. Indeed, the majority of children in Tanzania received supplementary foods or liquids in addition to breast milk during the second half of infancy: 84 percent at $6-7$ months and more than 90 percent at $8-9$ and $10-11$ months.

Table 9.1 Initial breastfeeding

Percentage of children born in the five years preceding the survey who were ever breastfed, and the percentage of last-born children who started breastfeeding within one hour of birth and within one day of birth, by selected background characteristics, Tanzania 1991/92

Background characteristic	Among all children:		Among last-born children, percentage who started breastfeeding:		
	Percentage ever breastfed	Number of children	Within 1 hour of birth	$\begin{gathered} \text { Within } \\ 1 \text { day } \\ \text { of birth } \end{gathered}$	Number of children
Sex					
Male	97.5	4111	43.9	82.0	2727
Female	97.7	4007	43.8	81.9	2680
Residence					
Mainland	97.6	7878	43.4	81.5	5256
Dar es Salaam	95.6	381	39.9	80.9	281
Other urban	97.4	1277	46.1	83.6	934
Rural	97.7	6220	43.0	81.1	4041
Zanzibar	98.7	240	60.7	96.8	151
Region					
Dodoma	97.3	624	54.9	90.0	419
Arusha	98.2	543	46.5	91.6	376
Kilimanjaro	95.6	372	35.2	84.6	253
Tanga	97.7	410	22.3	68.3	289
Morogoro	96.9	475	65.6	89.7	337
Coast	96.5	117	25.5	79.7	83
Lindi	96.9	178	43.5	92.2	134
Mtwara	96.9	210	47.1	90.9	162
Ruvuma	97.7	273	48.2	93.3	186
Iringa	96.4	446	53.3	82.6	314
Mbeya	97.4	379	50.4	83.4	266
Singida	98.7	308	52.1	92.5	207
Tabora	98.9	232	48.4	86.3	151
Rukwa	96.7	223	49.0	83.9	144
Kigoma	95.0	360	53.4	84.8	225
Shinyanga	99.2	807	25.7	64.6	492
Kagera	98.8	564	47.7	81.9	331
Mwanza	98.7	608	30.0	67.3	373
Mara	98.4	368	31.0	67.9	234
Mother's education					
No education	97.6	2872	46.5	82.4	1872
Primary incomplete	98.0	1520	40.8	84.0	1000
Completed primary	97.4	3480	42.8	80.5	2360
Secondary/Higher	97.6	244	47.3	85.3	175
Asslstance at dellvery					
Medically trained person	98.0	4426	44.2	83.7	2996
Traditional birth attendant	97.5	977	49.9	85.9	625
Other or none	97.9	2680	41.3	78.0	1774
Missing	(28.5)	34	*	*	11
Place of dellvery					
Health facility	98.0	4317	44.1	83.7	2915
At home	97.8	3700	43.8	80.1	2431
Other	*	3	*	*	2
Missing	73.3	97	31.5	72.8	59
All children	97.6	8117	43.8	82.0	5407

Note: Rates shown in parentheses are based on 25-49 women, whereas an asterisk means the rate is based on fewer than 25 women and has been suppressed. Table is based on all children born in the five years preceding the survey, whether living or dead at the time of the interview.

Table 9.2 Breastfeeding status
Percent distribution of living children by breasfeeding status, according to child's age in months, Tanzania 1991/92

Age in months	Percentage of living children who are:				Total	Number of living children
	Not breastfeeding	Exclusively breastfed	Breastfeeding and:			
			Plain water only	Supplements		
0-1	0.8	42.5	35.2	21.6	100.0	237
2-3	0.8	23.5	28.7	47.0	100.0	274
4-5	0.0	7.6	15.7	76.6	100.0	329
6-7	2.5	5.6	7.8	84.1	100.0	264
8-9	0.2	1.4	4.0	94.3	100.0	267
10-11	0.8	0.0	2.6	96.6	100.0	267
12-13	5.2	0.8	3.4	90.7	100.0	285
14-15	5.7	0.7	3.5	90.1	100.0	280
16-17	14.7	0.4	0.6	84.2	100.0	278
18-19	22.4	1.3	0.8	75.5	100.0	262
20-21	32.7	0.0	1.4	65.9	100.0	239
22-23	52.7	0.6	1.2	45.5	100.0	271
24-25	75.6	0.0	0.8	23.6	100.0	244
26-27	85.2	0.0	0.0	14.8	100.0	228
28-29	91.9	0.0	0.0	8.1	100.0	243
30-31	92.0	0.0	0.3	7.7	100.0	248
32-33	94.1	0.0	0.4	5.5	100.0	249
34-35	93.5	0.0	0.3	6.2	100.0	213

Note: Breastfeeding status refers to preceding 24 hours. Children classified as breastfeeding and plain water only receive no supplements.

Continuing breastfeeding beyond the first birthday is common. About 95 percent of children 12-15 months were still breastfed as were 78 percent at $18-19$ months. Although most women stopped breastfeeding during the second half of the second year of life, one-fourth of children $24-25$ months continued being breastfed.

Mothers of breastfed children receiving supplementary feeding were asked to name the type of foods they had given their children during the last 24 hours and whether they had used a bottle and teat (nipple). In general, use of infant formula was relatively low (less than 10 percent of infants), although a substantial number of children were given other types of milk (Table 9.3). Infant formula is quite expensive in Tanzania and most people cannot afford it. Use of other milk was less common (5 percent) below age of two months, while between the ages of 2 and 24 months, over 20 percent of children were receiving types of milk other than breast milk. Solid or mushy food was introduced into the diet early. About 3 percent of breastfeeding children reportedly received solid or mushy foods before reaching two months of age. However, too few children 6-9 months of age receive solid foods and breast milk (60 percent), the age by which all children should receive complementary solid foods.

Table 9.3 Breastfeeding and supplementation by age
Percentage of breastfeeding children who are receiving specific types of food supplementation, and the percentage who are using a bottle with a nipple, by age in months, Tanzania 1991/92

Age in months	Percentage of breastfeeding children who are:					$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { children } \end{aligned}$
	Receiving supplement				Using a bottle with a nipple	
	Infant formula	Other milk	Other liquid	Solid/ mushy		
0-1	0.0	5.0	15.4	2.7	0.7	236
2-3	4.5	21.6	26.5	8.7	6.6	272
4-5	7.3	31.1	43.4	30.2	4.2	329
6-7	10.2	28.5	56.3	45.8	7.7	258
8-9	17.7	35.8	55.6	72.9	5.2	266
10-11	6.9	33.3	61.3	80.2	4.9	265
12-13	10.3	26.8	52.5	89.5	3.9	270
14-15	13.5	36.2	62.1	89.6	5.4	264
16-17	14.0	33.2	58.6	91.2	3.3	237
18-19	11.7	37.0	62.9	91.5	4.5	203
20-21	4.4	31.2	63.1	91.6	10.2	161
22-23	14.3	28.2	57.3	94.1	3.6	128
24-25	20.0	23.9	59.1	88.7	2.2	60

Note: Breastfeeding status refers to preceding 24 hours. Percents by type of supplement among breastfeeding children may sum to more than 100 percent, as children may have received more than one type of supplement.

Although a substantial proportion of breastfed children across all age categories were given other milk, bottle feeding was not common. Only 4 percent of children $0-5$ months and 6 percent of children 6-11 months received something in a bottle during the last 24 hours. These results suggest that the majority of children receiving other milk are not using a bottle and nipple.

Prolonged breastfeeding is common in Tanzania. Based on current status data, the median duration of breastfeeding was 21.6 months (Table 9.4). There was very little difference in median duration of breastfeeding between urban and rural areas. Compared to other regions, the median duration of breastfeeding was found to be lower in Tanga, Shinyanga, and Mbeya. However, the numbers of observations are small and these figures should be interpreted cautiously. Median duration of breastfeeding was found not to vary by mothers education, type of assistance at delivery, and sex of the child.

Children were categorized as fully breastfed if they were receiving only breast milk or if water was the only addition to their diet. The median duration of full breastfeeding nationwide was 2.3 months. The median duration of full breastfeeding was longer in rural areas than in urban areas and among women with no education than in educated women. Most educated women and those in urban areas tend to be employed and hence are more likely to introduce supplementary foods to their children early. The longest median duration of full breastfeeding was reported in Shinyanga (5 months), whereas in Dar es Salaam, Lindi, and Kigoma it was lcss than one month.

Table 9.4 Median duration and frequency of breastfeeding

Median duration of any breastfeeding, exclusive breastfeeding, and full breasffeeding among children under 5 years of age, and the percentage of children under 6 months of age who were breasted six or more times in the 24 hours preceding the interview, according to background characteristics, Tarzania 1991/92

Background characteristic	Median duration in months ${ }^{1}$			Number of children under 3 years of age	Children under 6 months		
				Breastfed			
	Any breastfeeding	Exclusive breastfeeding	Full breastfeeding ${ }^{2}$		in preceding 24 hours	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { children } \end{aligned}$	
Region							
Mainland	21.6	0.6	2.3		4981	93.3	823
Dar es Salaam	20.1	0.4	0.6	229	96.4	44	
Other urban	21.3	1.0	1.6	854	87.7	120	
Rural	21.7	0.7	2.5	3898	94.1	660	
Zanzibar	21.2	0.4	1.9	150	(90.7)	17	
Residence							
Dodoma	24.5	0.9	2.4	424	(100.0)	82	
Arusha	20.4	0.6	1.6	365	(86.1)	63	
Kilimanjaro	22.6	0.5	1.0	220	(85.4)	32	
Tanga	16.2	0.4	1.6	258	(86.0)	44	
Morogoro	22.2	0.4	2.0	282	(100.0)	36	
Coast	24.9	0.4	1.6	73	(97.2)	11	
Lindi	23.4	0.5	0.7	106	(89.4)	20	
Mtwara	23.4	0.4	3.3	124	(79.0)	19	
Ruvuma	23.1	0.4	1.7	168	(85.0)	24	
Iringa	22.0	0.6	3.1	277	(98.3)	45	
Mbeya	17.5	1.7	2.0	238	*	33	
Singida	21.2	0.6	2.5	202	(94.8)	34	
Tabora	22.9	1.2	2.0	146	(100.0)	29	
Rukwa	21.7	0.5	2.3	141	92.0	27	
Kigoma	20.6	0.4	0.7	223	(93.2)	35	
Shinyanga	17.2	2.3	5.0	511	98.8	84	
Kagera	24.6	2.4	3.2	368	(98.5)	71	
Mwanza	20.6	1.4	2.5	389	(86.1)	49	
Mara	19.3	0.7	1.3	236	87.5	41	
Education							
No education	21.8	0.7	3.0	1720	94.4	268	
Primary incomplete	21.8	0.7	2.3	943	93.0	146	
Completed primary	21.5	0.6	1.9	2306	93.9	397	
Secondary/Higher	19.8	0.4	1.9	163	75.1	29	
Assistance at dellvery							
Medically trained	21.6	0.6	2.1	2747	93.0	466	
Traditional midwife	21.6	0.6	1.9	620	94.1	106	
Other or none	22.6	0.6	3.2	1433	94.3	224	
Missing	20.8	2.0	3.4	332	88.4	44	
Sex of child							
Male	21.7	0.7	2.4	2602	93.3	444	
Female	21.6	0.6	2.2	2530	93.2	396	
Total	21.6	0.6	2.3	5131	93.2	841	
Mean	21.2	2.2	4.1	-	.	-	
Prevalence/Incidence ${ }^{3}$	21.1	1.5	3.5	-	-	-	

Note: Rates shown in parentheses are based on $25-49$ women, whereas an asterisk means the rate is based on fewer than 25 women and has been suppressed.
${ }^{1}$ Medians and means are based on current status
${ }^{2}$ Either exclusive breasffeeding or breasffeeding and plain water only
${ }^{3}$ Prevalence-incidence mean

Ninety-three percent of children under six months of age were breastfed six or more times in the 24 hours preceding the interview.

An important determinant of child caloric intake is the number of meals given to a child per day. Table 9.5 presents the number of meals given to the child the day before the survey by age of the child. Most children reportedly had three meals (38 percent), while one-third had two meals and 15 percent had less than two meals the day prior to the interview. Only 6 percent of children had four meals or more. There is, however, marked variation by age, which presumably is related to breastfeeding. For instance, most children under 6 months of age did not receive a meal the previous day. Therefore, the focus in this table should be on older children. Almost half of children aged 2 years and over had three meals the previous day, and about one-third had two meals. Less than 5 percent of children aged 2 years and over had less than two meals.

Table 9.5 Feeding patterns for children under 5

Percent distribution of children under five years by number of meals in last 24 hours by age, Tanzania 1991/92

Age in months	Number of meals							Don't know	Missing	Number
	0	1	2	3	4	5	6			
<6	45.4	12.7	13.7	5.9	1.0	0.3	0.2	3.3	17.5	756
6-11	15.6	20.4	32.3	22.9	5.4	1.2	0.0	1.0	1.1	798
12-23	2.0	11.7	39.3	37.6	5.7	1.3	0.2	2.0	0.2	1616
24-35	0.3	3.3	36.4	45.6	5.3	1.2	0.4	7.5	0.3	1425
36-47	0.2	3.7	31.1	49.6	5.4	1.3	0.0	8.8	0.8	1281
48-59	0.1	3.7	30.5	49.5	4.9	0.5	0.3	10.5	1.1	1296
Total	7.1	8.2	32.1	38.3	4.9	1.0	0.2	5.8	2.4	7171

9.2 Birth Weight

Data on birth weight are important for two reasons. First, national estimates of the incidence of low birth weight are internationally recognised indicators of the well-being of neonates and women of reproductive age. Second, the weight at birth is a leading determinant of the survival chances of a newborn. The main sources of birth weight data in developing countries are health facility statistics. However, these data are usually limited to babies born within health facilities, a group of babies that is markedly different from the overall population.

Recent studies have shown that surveys can provide useful information on birth weight (Moreno and Goldman, 1990). Therefore, TDHS included questions on birth weight for all children bom in the five years preceding the survey. The mother was first asked to recall the size of the child at birth: very large, large, average, small, or very small. Then, she was asked whether the child had been weighed at birth, and, if so, what the weight was.

Table 9.6 shows that slightly more than half of births in the last five years had been weighed at birth (52 percent). Almost all mothers who reported their child had been weighed could actually recall the weight (50 percent). The proportion of children with numerical birth weight does differ considerably by residence and region. In urban areas (including Dar es Salaam) more than 80 percent knew the birth weight of their children, compared to 41 percent in rural mainland and 31 percent in Zanzibar. Kilimanjaro region also had

Table 9.6 Birth weight data

Among children born in the five years preceding the survey, the proportion weighed at birth and the percent distribution by type of birth weight data (recalled weight or size at birth), according to background characteristics, Tanzania 1991/92

Background characteristic	Weighed at birth		Don't know/ Missing	Total	Type of birth weight data			Total	Number	
			Numeric weight		Size only	None				
Residence										
Mainland	52.6	46.9		0.5	100.0	50.2	49.4	0.4	100.0	7793
Dar es Salaam	86.9	12.6	0.5	100.0	86.9	12.6	0.6	100.0	373	
Other urban	86.6	13.1	0.3	100.0	84.9	15.0	0.1	100.0	1273	
Rural	43.5	56.0	0.5	100.0	40.8	58.7	0.5	100.0	6148	
Zanzibar	31.7	68.2	0.2	100.0	30.7	69.3	0.0	100.0	238	
Region										
Dodoma	57.7	42.3	0.0	100.0	56.6	43.4	0.0	100.0	623	
Arusha	48.9	49.4	1.7	100.0	47.6	52.0	0.3	100.0	534	
Kilimanjaro	83.5	15.7	0.8	100.0	81.2	18.8	0.0	100.0	368	
Tanga	54.6	44.9	0.5	100.0	51.7	42.8	5.5	100.0	406	
Morogoro	55.4	44.2	0.5	100.0	54.1	45.9	0.0	100.0	471	
Coast	54.5	44.7	0.8	100.0	54.2	45.8	0.0	100.0	116	
Lindi	58.8	38.9	2.3	100.0	54.2	45.8	0.0	100.0	178	
Mtwara	46.6	53.4	0.0	100.0	39.7	60.3	0.0	100.0	208	
Ruvuma	70.9	28.9	0.2	100.0	64.6	35.4	0.0	100.0	271	
Iringa	60.6	38.2	1.1	100.0	58.7	41.3	0.0	100.0	439	
Mbeya	51.2	48.8	0.0	100.0	47.8	52.2	0.0	100.0	375	
Singida	53.7	46.0	0.3	100.0	51.0	49.0	0.0	100.0	306	
Tabora	66.3	33.7	0.0	100.0	61.8	38.2	0.0	100.0	231	
Rukwa	44.1	54.4	1.5	100.0	42.2	57.6	0.2	100.0	223	
Kigoma	36.6	62.8	0.6	100.0	34.9	64.7	0.5	100.0	358	
Shinyanga	39.5	60.3	0.1	100.0	35.4	64.6	0.0	100.0	791	
Kagera	39.0	61.0	0.0	100.0	37.5	61.9	0.6	100.0	554	
Mwanza	38.6	61.4	0.0	100.0	36.3	63.4	0.3	100.0	605	
Mara	38.0	61.0	0.9	100.0	37.9	62.1	0.0	100.0	363	
Education										
No education	36.5	62.9	0.6	100.0	32.8	66.7	0.5	100.0	2841	
Primary incormplete	53.4	45.9	0.7	100.0	51.4	48.2	0.4	100.0	1501	
Completed primary	61.8	37.9	0.3	100.0	60.3	39.3	0.4	100.0	3448	
Secondary/Higher	83.7	15.8	0.5	100.0	83.3	16.7	0.0	100.0	242	
Total	52.0	47.6	0.5	100.0	49.6	50.0	0.4	100.0	8032	

more than 80 percent of births with known birth weights. At the lower end are Shinyanga and Kagera with 35 percent of births with known birth weight.

Table 9.7 presents a national estimate of the mean birth weight and the incidence of low birth weight for births in the five years preceding the survey. Low birth weight is defined as birth weight less than 2500 grams. Since there was considerable heaping of responses at 2500 grams, half of these births have been considered as below 2500 grams and half of these as at least 2500 grams. The mean birth weight for children with known birth weight was 3024 grams, and the incidence of low birth weight was 16.9 percent. As indicated above, these estimates may be biased, since women delivering in health facilities are a selective sample. Therefore, data on size at birth were used to obtain an estimate of mean birth weight and the incidence of low birth weight for the whole population.

Comparing the subjective sizes of children at birth shows that the distribution among children with no known/reported birth weight is skewed towards smaller sizes compared to children with known birth weights: there are more small children and fewer large children if the birth weight was not known. Among children with known birth weight there is a strong relationship between birth weight and reported size at birth. The mean birth weights for each size category are used to calculate the mean birth weight among children with no numerical birth weight. Thus, the estimated mean birth weight for all children in Tanzania is 3008 grams and the incidence of low birth weight is 18.0 percent. This indicates that low birth weight is a significant public health problem in Tanzania. Its relatively high incidence may be due to poor health and nutritional status of women, to malaria and other infectious diseases, and to poor nutrition during pregnancy.

9.3 Child Nutritional Status

Nutritional status is a major determinant of children's susceptibility to diseases and is influenced by feeding practices as well as infections. Provision of inadequate or unbalanced diet and recurrent or chronic diseases are associated with poor nutritional status. To assess the nutritional status of children, height and weight were measured and used to construct the following indices: height-for-age, weight-for-height, and weight-for-age.

In TDHS, all children under five years whose mothers were present in the sample household the night before the interview were eligible to be included in the anthropometric data collection. However, not all eligible children are included in the results here: height or weight measurements are missing for about 8 percent of eligible children, and one or both of the measurements are grossly improbable in 5 percent of cases. The date of birth was either not known or was incomplete for 3 percent of the cases. Since two of the indices (height-for-age and weight-for-age) depend on the accuracy of the child's age, these indices are shown for 84 percent of the eligible children. Although the term "height" is used here, children younger than 24 months were measured lying on a measuring board (recumbent length), while standing height was measured for older children. For the measurement of weight a digital scale with accuracy of 100 grams was used.

As recommended by the WHO, the nutritional status of children in the survey was compared with an international reference population defined by the U.S. National Center for Health Statistics (NCHS) and accepted by the U.S. Centers for Disease Control (CDC). Use of this reference population is based on the finding that well-nourished young children of all population groups (for which data exist) follow very similar growth patterns (see Martorell and Habicht, 1986). The reference population serves as a point of comparison, facilitating the examination of differences in the anthropometric status of subgroups in a population and of changes in nutritional status over time. Although there are inherent variations in height and weight, these variations tend to approximate the normal distribution when the population is large.

The height-for-age index is an indicator of linear growth retardation. Children whose height-for-age is below minus two standard deviation (-2SD) from the median of the reference population are considered short for their age (also referred to as "stunted"), and are chronically undernourished. Children who are below minus three standard deviations (-3 SD) from the median of the reference population are considered severely stunted. Stunting reflects the outcome of a failure to receive adequate nutrition over a long period of time, and is also affected by recurrent and chronic illness. Height-for-age, therefore, represents a measure of the long-term effects of undernutrition in a population and does not vary appreciably according to the season of data collection.

The weight-for-height index measures body mass in relation to body length, and describes current nutritional status. Children who are below minus two standard deviations (-2SD) from the median of the reference population are considered thin (also referred to as "wasted"), and are acutely undernourished. Wasting represents the failure to receive adequate nutrition in the period immediately preceding the survey and may be the result of recent episodes of illness, causing loss of weight and the onset of undernutrition. Wasting may also reflect acute food shortage. Children whose weight-for-height is below minus three standard deviations (-3SD) from the median of the reference population are considered to be severely wasted.

Weight-for-age is a composite index of height-for-age and weight-for-height that takes into account both acute and chronic undernutrition. It is a useful tool in clinical settings for continuous assessment of nutritional progress and growth. Children whose weight-for-age is below minus two standard deviations from the median of the reference population are classified as "underweight." In the reference population only 2.3 percent of children fall below minus two standard deviation (-2SD) for each of the three indices.

Considering weight-for-height, the nutritional status of Tanzanian children remains very close to the reference population (see Figure 9.1). However, regarding height-for-age and weight-for-age, their nutritional status falls below the standard population during the first 18 months of age and tends to stabilize thereafter. The deterioration is especially rapid during the first 6 months.

> Figure 9.1 Nutritional Status of Children Under Five Years, Mean Z-scores by Age in Months

Note: Compared to the median of the NCHS/CDC/WHO reference population

The distribution of nutritional status based on height-for-age, weight-for-height, and weight-for-age indices, by the child's age and selected demographic characteristics for 6,095 children is shown in Table 9.8, and by socioeconomic characteristics in Table 9.9 and Figure 9.2. Almost half of the children (47 percent) were found to be stunted, and 20 percent were severely stunted. These results indicate that chronic malnutrition is a major public health problem in Tanzania. Although stunting was less common among children below one year of age, it increased rapidly during the first year of life, so that during the second year of life half of the children were stunted. There were no appreciable differences in stunting by sex of the child, birth order, or length of preceding birth interval. Data by region show some interesting differences, although

Table 9.8 Nutritional status by demographic characteristics
Percentage of children under five years who are classified as undernourished according to three anthropometric indices of nutritional status: height-for-age, weight-for-height, and weight-for-age, by selected demographic characteristics, Tanzania 1991/92

Demographic characteristic	Height-for-age		Weight-for-height		Weight-for-age		Numberofchildren
	Percentage below . 3 SD	Percentage below $-2 \mathrm{SD}^{1}$	$\begin{gathered} \text { Percentage } \\ \text { below } \\ .3 \text { SD } \end{gathered}$	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -2 S D^{1} \end{gathered}$	Percentage below -3 SD	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -2 S D^{1} \end{gathered}$	
Age (months)							
<6	1.0	12.0	0.6	2.1	0.4	5.4	705
6-11	7.2	25.6	0.6	6.8	7.5	28.9	735
12-23	19.4	49.5	1.4	9.8	10.9	36.7	1440
24-35	26.6	57.2	1.8	4.9	7.5	32.6	1223
36-47	29.1	59.5	1.0	3.4	6.5	30.2	1028
48-59	25.6	56.8	1.1	4.4	6.2	27.6	963
Sex							
Male	21.0	48.1	1.2	6.2	6.8	28.7	3030
Female	18.7	45.3	1.2	5.1	7.3	28.9	3065
Blrth order							
1	17.5	43.8	1.4	6.3	6.0	25.8	1270
2.3	19.5	46.3	1.3	5.0	7.0	27.7	1992
4-5	21.7	46.6	0.9	6.2	7.4	32.9	1289
$6+$	20.7	49.6	1.1	5.5	7.9	29.2	1544
Birth interval (months)							
First birth	17.5	43.9	1.4	6.3	6.0	26.0	1276
<24	22.9	48.7	0.6	4.7	7.9	30.7	789
24-47	21.0	48.1	1.3	5.6	7.2	29.7	3118
48+	16.5	43.9	1.1	5.9	7.6	28.0	912
All children	19.8	46.7	1.2	5.6	7.1	28.8	6095

Note: Figures are for children bom in the period 1-59 months preceding the survey. Each index is expressed in terms of the number of standard deviation (SD) units from the median of the NCHS/CDC/WHO international reference population. Children are classified as undemourished if their \mathbf{z}-scores are below minus two or minus three standard deviations (-2 SD or -3 SD) from the median of the reference population. ${ }^{1}$ Includes children who are below -3 SD

Table 9.9 Nutritional status by socioeconomic characteristics
Percentage of children under five years who are classified as undemourished according to three anthropometric indices of nutritional status: height-for-age, weight-for-height, and weight-for-age, by selected socioeconomic characteristics, Tanzania 1991/92

Socioeconomic characteristic	Height-for-age		Weight-for-height		Weight-for-age		Number of children
	Percentage below -3 SD	Percentage below $-2 S D^{1}$	$\begin{aligned} & \text { Percentage } \\ & \text { below } \\ & -3 \text { SD } \end{aligned}$	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -2 S D^{1} \end{gathered}$	$\begin{aligned} & \text { Percentage } \\ & \text { below } \\ & -3 \text { SD } \end{aligned}$	$\begin{gathered} \text { Percentage } \\ \text { below } \\ -2 S D^{1} \end{gathered}$	
Residence							
Mainland	19.7	46.6	1.2	5.5	7.0	28.5	5943
Dar es Salaam	11.3	28.5	1.3	6.8	4.0	19.9	277
Other urban	15.5	44.8	0.6	4.4	4.2	27.4	965
Rural	21.1	48.1	1.3	5.6	7.7	29.2	4701
Zanzibar	25.7	47.9	1.5	11.0	12.3	39.9	152
Region							
Dodoma	28.4	59.1	0.6	2.6	7.2	37.0	469
Arusha	14.8	38.7	0.9	5.9	5.2	29.4	381
Kilimanjaro	19.0	40.1	1.5	5.2	6.8	26.0	306
Tanga	16.6	44.0	3.6	14.7	5.7	30.5	291
Morogoro	23.2	61.1	0.6	5.4	8.3	34.0	361
Coast	28.2	54.8	0.3	6.0	10.5	36.7	91
Lindi	24.3	58.3	1.5	5.8	10.4	28.5	133
Mtwara	37.9	65.0	0.6	6.8	11.4	48.3	160
Ruvuma	27.9	56.8	1.2	4.5	9.0	32.9	217
Iringa	32.7	61.4	0.4	3.1	13.3	37.1	350
Mbeya	21.0	50.4	3.2	5.6	9.5	24.4	277
Singida	15.1	39.8	1.0	6.8	6.8	33.5	247
Tabora	16.9	44.8	0.8	4.8	5.3	24.1	192
Rukwa	19.2	48.3	1.4	4.1	4.0	25.2	159
Kigoma	21.4	52.3	0.7	5.5	7.3	34.1	291
Shinyanga	9.7	35.0	0.8	5.5	6.2	19.7	591
Kagera	19.5	44.3	1.9	5.0	6.0	26.8	431
Mwanza	15.6	39.4	0.5	4.5	5.2	20.7	456
Mara	12.7	37.0	1.3	4.5	2.6	18.9	263
Mother's education							
No education	22.5	50.3	0.7	6.1	8.6	32.1	2088
Primary incomplete	22.8	51.5	1.5	5.3	8.3	32.3	1177
Completed primary	17.1	42.9	1.5	5.5	5.7	25.4	2659
Secondary/Higher	10.3	27.6	0.4	4.0	2.7	17.7	170
All children	19.8	46.7	1.2	5.6	7.1	28.8	6095

Note: Figures are for children bom in the period 1-59 months preceding the survey. Each index is expressed in terms of the number of standard deviation (SD) units from the median of the NCHS/CDC/WHO international reference population. Children are classified as undemourished if their \mathbf{z}-scores are below minus two or minus three standard deviations (-2 SD or -3 SD) from the median of the reference population.
${ }^{1}$ Includes children who are below -3 SD

the small number of observations in most regions should be taken into account. Stunting is less common in Dar es Salaam, where 28 percent of children under 5 years are below -2 SD. An additional six regions have less than 40 percent stunting, and three regions (Morogoro, Iringa, and Mtwara) have more than 60 percent stunting. Educational differences were pronounced. More than half of the children of mothers with no or incomplete primary education were stunted versus 28 percent of children of mothers with secondary education.

The weight-for-height index gives information about children's recent nutritional status. Severe wasting represents failure to receive adequate nutrition in the period immediately preceding the survey and may be the result of recent illness or of seasonal variations in food supply. Almost 6 percent of children were wasted (i.e., below two standard deviations from the median of the reference population), and one percent was severely wasted (-3SD). Wasting was more common among children between 6-23 months. There was no association between wasting and birth order and length of birth interval. More than 10 percent wasting was observed in the Zanzibar and Tanga regions.

Weight-for-age provides an index for chronic and acute undemutrition, but does not distinguish between a child who is underweight because of stunting and one who is underweight because of wasting. Almost two-thirds of children (29 percent) were underweight, and 7 percent were below minus three standard deviations ($-3 S D$) from the median of the reference population and therefore classified as severely underweight. The prevalence of underweight was lowest among children below 6 months of age and varied little by sex, birth order, or birth interval. Larger differences were evident by region. The lowest proportion of underweight children was found in Mara region (19 percent). In Zanzibar, the proportion underweight was twice as high as in Dar es Salaam (40 percent versus 20 percent), while the proportion with severe underweight was three times higher than in Dar es Salaam (12 percent versus 4 percent). Mtwara, Zanzibar, and Iringa had the highest prevalence of underweight. The high rate of undernutrition in Iringa was not expected because the region has been the site of the joint UNICEF/WHO Nutrition Support Programme for
over six years. Further analysis and larger numbers of measurements are required before coming to any conclusions regarding the anthropometric impact of the programme in Iringa.

9.4 Mother's Nutritional Status

Several indicators can be used to assess nutritional status of women (Krasovec and Andersen, 1991). During the TDHS, data on height and weight of women with living children under 5 years of age were collected. it is important to note that anthropometric data were not collected for women with no children under five years. This implies that several groups of women are underrepresented, for instance, women 15-19 and women 45-49 years. The same equipment was used for both child and adult anthropometry. The measuring board was equipped with an extension so that it could measure adults, and a digital bathroom scale with accuracy of 100 grams was used to weigh the women and children.

Table 9.10 shows the means and standard deviations for three anthropometric measures: height, weight, and body mass index (BMI). Arm circumference was not taken.

Height is a good indicator of socioeconomic status and is also useful to identify women at nutritional risk. In addition, maternal height is used to predict the risk of difficult delivery, since a short stature is correlated with a small pelvis. The risk of low birth weight also appears to be higher for children of short women. The optimal cutoff point to identify high-risk deliveries varies among populations, but is likely to be in the range $140-150 \mathrm{~cm}$. The mean height of women was 155.9 cm . The TDHS shows that almost 4 percent of women were shorter than 145 cm , and 17 percent measured below 150 cm . The mean weight was 52.8 kg , excluding pregnant women.

Body mass indices are used to assess thinness or obesity. The most commonly used index is the BMI, which is defined as weight in kilograms divided by the square height in metres. A cut-off point of 18.5 has been recommended for defining chronic energy deficiency. Obesity has not been defined clearly. The mean BMI was 21.7 among women not pregnant at the time of the survey and having a living child under five years of age. Almost 10 percent of women had a BMI below 18.5, suggesting chronic energy deficiency.

Table 9.11 presents mean height, percent below 145 cm , mean BMI, and percent with BMI below 18.5 by background characteristics. Variation in height was limited by urban/rural, education, age, and parity. The largest differences were observed by region. Regions in northern Tanzania (Arusha and Kilimanjaro) and Mara, Mwanza, Kagera, and Shinyanga appeared to have taller women than in most other regions of Tanzania. However, differences in BMI were very small. For instance, the region with the lowest BMI was Mtwara with 20.9 and the highest was Dar es Salaam with 22.8 . The only subgroup with a higher BMI than all other women were women with at least secondary education (24.0 versus 21-22).

Table 9.11 Differentials in maternal anthropometric indicators
Mean height and percentage of women shorter than 145 centimetres, mean body mass index (BMI), and the percentage of women whose BMI is less than 18.5, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Height			BMI		
	Mean	$\begin{gathered} \text { Percent } \\ <145 \mathrm{~cm} \end{gathered}$	Number	Mean	Percent <18.5	Number
Region						
Mainland	155.9	3.7	5093	21.7	9.6	4185
Dar es Salaam	154.3	4.6	272	22.8	5.8	230
Other urban	155.2	4.5	899	22.4	6.3	765
Rural	156.2	3.4	3921	21.5	10.7	3189
Zanzibar	154.8	6.3	145	21.3	11.5	120
Residence						
Dodoma	154.0	7.3	410	21.3	7.5	360
Arusha	157.8	0.2	362	21.7	16.4	314
Kilimanjaro	156.3	2.3	238	21.9	12.6	206
Tanga	154.4	3.9	266	21.2	12.5	221
Morogoro	152.4	10.9	327	21.7	9.2	265
Coast	152.0	11.6	80	21.8	12.6	68
Lindi	153.0	7.4	132	21.3	11.8	113
Mtwara	151.7	11.7	158	20.9	20.7	127
Ruvuma	153.1	8.7	180	21.6	7.6	153
Ininga	154.8	2.9	311	22.2	6.8	253
Mbeya	155.6	3.3	249	22.0	7.9	199
Singida	158.4	0.5	205	21.2	11.7	172
Tabora	156.2	1.9	148	21.6	9.7	121
Rukwa	156.7	2.4	137	21.8	7.3	112
Kigoma	155.7	2.2	221	21.5	11.6	176
Shinyanga	159.1	0.6	480	22.0	3.6	364
Kagera	157.3	0.7	327	21.8	10.6	265
Mwanza	158.3	0.9	364	22.1	6.9	293
Mara	159.4	0.9	224	21.1	10.4	172
Education						
No education	155.7	3.5	1816	21.4	12.1	1470
Primary incomplete	155.3	4.2	967	21.4	10.5	816
Completed primary	156.2	3.9	2292	21.9	7.8	1876
Secondary/Higher	156.7	1.5	163	24.0	4.0	143
Age of woman						
<20	155.4	7.3	495	21.5	9.3	407
20-34	156.0	3.6	3549	21.7	9.0	2859
≥ 35	155.6	2.7	1193	21.8	11.8	1039
Children ever born						
1	156.1	5.1	1100	21.5	10.0	886
2-3	155.8	4.8	1643	21.9	7.5	1312
4-5	155.8	2.7	1084	21.6	9.7	893
$6+$	155.8	2.3	1410	21.7	11.8	1215
Total	155.9	3.8	5238	21.7	9.7	4305

CHAPTER 10

RESULTS OF THE MALE SURVEY

10.1 Background Characteristics of the Male Survey Respondents

General Characteristics

In the TDHS, 2114 men were interviewed to obtain information about background and demographic characteristics, sexuality, family planning knowledge and practice, fertility preference and AIDS knowledge. Men were eligible for the individual interview if they were between age 15 and 60 , and stayed in the household the night before the household interview was conducted. One in four households was selected for the male survey and the results are presented here. Results about AIDS knowledge are not presented here but are presented in Chapter 11.

Table 10.1 shows the percentage distribution of background characteristics of the respondents. Almost a quarter of men (24 percent) were age 15-19 years. This proportion was much higher than that of men age 20-24 years, a pattern typical of expanding population, although it also appears younger males were more likely to be found at home during the interviewers' visits. Thirty-nine percent of male respondents were unmarried and 56 percent were currently married (either in monogamous or polygamous union). One-fifth of the respondents had no formal education. Among those with formal education, a majority (71 percent) had primary education and only 9 percent had secondary or higher education. A majority of respondents were from the Tanzania mainland (98 percent) and over two-thirds (71 percent) were from rural areas. One-third were Moslems, 27 percent Catholics, and 25 percent Protestants.

Differentials in Education

Table 10.2 shows the distribution by education level of respondents according to age, rural/urban residence, and region. Compared to men in the younger age categories, older men were more likely to be uneducated. The proportion of men with no education was relatively higher in Zanzibar (where the number of men is small) and in rural areas than in mainland Tanzania and urban areas, respectively. However, Zanzibar also had the largest proportion of men with at least secondary education. The level of education was found to vary in the regions. Tanga, Ruvuma, and Dar es Salaam had the lowest proportion of uneducated men, and Mtwara, Shinyanga, and Dodoma had the highest proportion. In mainland Tanzania, Dar es Salaam had the largest proportion of men with secondary and higher education.

Access to mass media

All eligible men were asked if they usually listen to a radio, watch television, or read a newspaper at least once in a week (Table 10.3). This information can be used in identifying appropriate communication channels that can be used to reach most people. Overall, 77 percent reported listening to the radio daily, and 45 percent reported reading newspapers. As expected, only 5 percent reported watching television at least once a week. Since there is no television station on the Tanzanian mainland, most of the people who reported watching television see programmes from Zanzibar or neighbouring countries. Men less than 40 years and those with at least primary education were more likely to read newspapers and listen to the radio than other men. Men in rural areas were less likely to read newspapers than their counterparts in urban areas. In Dar es Salaam, a majority of men (93 percent) reported reading newspapers. Radio listening was found to be common in both rural and urban areas. In Zanzibar about a third of the respondents reported watching television at least once a week.

Percent distribution of men by selected background characteristics, Tanzania 1991/92			
		Number of women	
Background characteristic	Weighted percent	Weighted	Unweighted
Age			
15-19	23.6	499	518
20-24	14.6	308	309
25-29	12.4	262	268
30-34	12.1	256	240
35-39	9.5	201	194
40-44	7.5	159	170
45-49	7.3	155	158
50-54	6.0	127	112
55+	6.1	129	123
Marital status			
Never married	38.7	819	810
Married, monogamous	47.0	993	993
Married, polygamous	9.0	190	191
Widowed/Divorced/Sep.	5.3	112	120
Education			
No education	19.8	418	425
Primary incomplete	29.6	625	638
Completed primary	41.5	878	879
Secondary/Higher	9.1	192	172
Residence			
Mainland	97.6	2063	2010
Dar es Salaam	7.2	151	132
Other urban	19.0	402	263
Rural	71.4	1510	1615
Zanzibar	2.4	51	104
Region			
Dodoma	8.2	173	83
Arusha	5.9	124	93
Kilimanjaro	6.0	128	106
Tanga	4.3	90	74
Morogaro	5.7	120	107
Coast	1.6	34	87
Lindi	2.2	47	75
Mtwara	5.2	109	97
Ruvuma	3.3	70	101
Iringa	5.6	117	91
Mbeya	4.9	103	69
Singida	3.2	67	88
Tabora	3.4	73	106
Rukwa	2.4	51	112
Kigoma	3.7	79	108
Shinyanga	8.4	177	145
Kagera	5.7	121	79
Mwanza	6.7	143	128
Mara	4.0	85	129
Religion			
Muslim	33.3	703	748
Catholic	27.2	575	594
Protestant	24.5	517	456
None	15.0	318	315
Other religion	0.0	1	1
All men	100.0	2114	2114

Table 10.2 Level of education

Percent distribution of men by highest level of education attended, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Level of education				Total	Number of men
	None	Primary incomplete	Completed primary	Secondary/ Higher		
Age						
15-19	11.4	40.1	42.3	6.2	100.0	499
20-24	13.1	11.2	66.1	9.6	100.0	308
25-29	7.5	15.2	68.3	9.0	100.0	262
30-34	11.8	19.2	53.9	15.1	100.0	256
35-39	26.5	31.8	31.3	10.4	100.0	201
40-44	28.3	41.5	22.2	8.0	100.0	159
45-49	30.6	42.6	16.3	10.5	100.0	155
	36.4	38.4	13.9	11.2	100.0	127
Residence	52.1	40.9	3.7	3.2	100.0	129
Mainland						
Dat es Salaam	19.6	29.8	42.1	8.5	100.0	2063
Other urban	6.6	20.4	49.7	23.3	100.0	151
Rural	12.2	29.7	39.8	18.3	100.0	402
Zanzibar	22.9	30.8	42.0	4.4	100.0	1510
	27.2	21.5	18.6	32.7	100.0	51
Region						
Dodoma	29.1	22.6	39.0	9.3	100.0	173
Arusha	15.9	22.8	48.6	12.7	100.0	124
Kilimanjaro	7.9	23.8	56.4	11.9	100.0	128
Tanga	5.0	41.1	47.1	6.9	100.0	90
Morogoro	14.6	43.0	36.4	6.0	100.0	120
Coast	20.3	37.2	39.9	2.6	100.0	34
Lindi	21.9	40.1	30.4	7.6	100.0	47
Mtwara	31.6	39.6	26.2	2.6	100.0	109
Ruvuma	5.8	30.7	60.9	2.6	100.0	70
Iringa	22.4	32.6	40.5	4.5	100.0	117
Mbeya	19.4	23.1	51.4	6.1	100.0	103
Singida	18.6	31.8	42.9	6.8	100.0	67
Tabora	26.7	21.7	45.9	5.7	100.0	73
Rukwa	20.1	35.3	39.6	5.0	100.0	51
Kigoma	23.7	32.9	38.0	5.5	100.0	79
Shinyanga	30.8	28.4	36.1	4.7	100.0	177
Kagera	21.0	26.6	37.3	15.2	100.0	121
Mwanza	25.6	36.0	33.8	4.6	100.0	143
Mara	15.0	28.2	44.5	12.4	100.0	85
Total	19.8	29.6	41.5	9.1	100.0	2114

Table 10.3 Access to mass media
Percentage of men who usually read a newspaper once a week, watch television once a week, or listen to radio once a week, by selected background characteristics, Tanzania 1991/92

Background characteristic	Read newspaper weekly	Watch television weekly	Listen to radio weekly	Number of men
Age				
15-19	47.7	3.2	76.5	499
20-24	52.2	7.0	83.2	308
25-29	49.8	8.6	84.5	262
30-34	51.1	7.4	79.0	256
35-39	44.6	5.9	79.6	201
40-44	31.1	1.3	70.4	159
45-49	40.1	9.6	70.7	155
50-54	29.6	4.3	67.9	127
55+	32.0	1.3	66.6	129
Education				
No education	2.9	1.6	51.8	418
Primary incomplete	40.7	2.6	74.4	625
Completed primary	58.7	6.8	85.8	878
Secondary/Higher	83.9	16.9	98.4	192
Residence				
Mainland	44.7	4.8	76.6	2063
Dar es Salaam	93.2	6.7	99.8	151
Other urban	66.7	13.4	93.8	402
Rural	33.9	2.3	69.8	1510
Zanzibar	44.8	30.8	85.4	51
Region				
Dodoma	46.7	12.2	90.1	173
Arusha	45.2	0.5	78.3	124
Kilimanjaro	55.8	6.4	96.6	128
Tanga	27.7	0.0	86.5	90
Morogoro	66.8	8.1	87.9	120
Coast	72.2	4.1	89.7	34
Lindi	48.9	3.4	72.9	47
Miwara	36.7	0.9	65.0	109
Ruvuma	50.6	0.0	71.7	70
Iringa	20.5	3.5	68.7	117
Mbeya	26.8	5.3	73.0	103
Singida	32.7	2.6	76.1	67
Tabora	31.7	0.8	57.3	73
Rukwa	23.1	4.1	73.0	51
Kigoma	31.9	0.0	67.1	79
Shinyanga	31.6	7.6	66.2	177
Kagera	22.2	0.0	40.6	121
Mwanza	51.3	7.2	75.3	143
Mara	63.4	8.7	84.1	85
Total	44.7	5.4	76.9	2114

10.2 Fertility Regulation

Knowledge of Contraception

One of the main objectives of the TDHS was to determine the level of knowledge of contraceptive methods and the sources where they can be obtained. Information on contraceptive knowledge was obtained by asking the respondent to name ways or methods that a couple could use to delay or avoid pregnancy. If the respondent failed to name a particular method spontaneously, the interviewer described the method and asked if he recognised it.

Table 10.4 shows that 78 percent of all men aged $15-60$ know of at least one method of family planning. Moreover, about 72 percent of men know where one can obtain a method of family planning. Among currently married men, 86 percent know a method and 80 percent know a place where it can be obtained. Knowledge of modem contraceptive methods was equally high. The pill was the most commonly known modem contraceptive method. Interestingly, male sterilisation was known by only a small proportion of men. Periodic abstinence and withdrawal were the most known traditional contraceptive methods. In general, knowledge of traditional methods was relatively low. These findings indicate that the overall knowledge of contraception is high. However, knowledge of some specific methods such as IUD, injection, vaginal methods, and male sterilisation was low. It is obvious that more intensive information, education, and communication (IEC) is needed to inform people about these methods.

Table 10.4 Knowledge of contraceptive methods and source for methods				
Percentage of all men and currently married men who know specific contraceptive methods and who know a source (for information or services), by specific methods, Tanzania 1991/92				
	Know method		Know a source	
Contraceptive method	All men	Currently married men	All men	Currently married men
Any method	78.3	85.8	71.5	79.7
Any modern method	76.8	84.2	71.2	79.3
Modern method				
Pill	65.0	76.0	56.8	67.7
IUD	25.8	34.9	21.7	29.1
Injection	31.8	38.8	29.6	36.4
Diaphragm/foam/jelly	30.0	37.1	25.7	32.2
Condom	64.8	71.2	57.6	63.8
Female sterilisation	50.4	60.4	48.4	58.1
Male sterilisation	21.4	27.7	19.1	24.9
Any traditional method	50.7	60.1	NA	NA
Periodic abstinence	36.3	44.8	30.4	38.9
Mucus method	17.0	23.1	NA	NA
Withdrawal	39.3	46.3	NA	NA
Other	12.6	17.8	NA	NA
Number of men	2114	1184	2114	1184
NA = Not applicable				

The level of knowledge of contraceptive methods and their source of supply among currently married males and females can be compared in Figure 10.1. In general, males have a relatively higher knowledge of contraceptive methods and places where they could be obtained. Men are more likely to know about condom, withdrawal, and periodic abstinence than women. However, women have relatively better knowledge of injections.

Figure 10.1 Contraceptive Knowledge Among Currently Married Men and Women

TDHS 1991/92

Among currently married men, knowledge of contraceptive methods is fairly high at all ages, especially among men 25-39 years (Table 10.5). Knowledge is high both in Zanzibar and mainland Tanzania and in both rural and urban areas. However, it is low among uneducated men and increases with increasing level of education. Contraceptive knowledge generally is high in most regions, although Shinyanga, Mwanza, and Coast have a relatively low level of knowledge.

Ever Use of Contraception

All eligible men (aged 15-60) interviewed in the TDHS who had heard of at least one method of family planning were asked if their wives and themselves had ever used contraceptives. Among unmarried men, the question of contraceptive use by their partners was not asked because most of these men are unlikely to know whether such use had ever occurred. Men were classified to have ever used contraceptives if they reported that they had ever used any method. This classification assumes that men were aware of the contraceptive practice of their wives. It is known that some women use contraceptives without the knowledge of their spouse. For example, in an ongoing study in Dar es Salaam, about one-third of women attending family planning clinics reported to have been using contraceptives without knowledge of their spouse (Kapiga et al. 1993). Hence, the results presented here may underestimate the true prevalence of contraceptive use. It should also be noted that the interpretation of this classification is difficult in polygamous marriages where some of the wives may be using contraceptives, and others may not be.

Table 10.5 Knowledge of modern contraceptive methods and source for				
Percentage of currently married men who know at least one modern contraceptive method and who know a source (for information or services), by selected background characteristics, Tanzania 1991/92				
Background characteristic	$\begin{gathered} \text { Know } \\ \text { any } \\ \text { method } \end{gathered}$	Know a modern method ${ }^{1}$	Know a source for modern method	Number of men
Age				
15-19	*	*	*	9
20-24	82.1	80.5	74.8	100
25-29	89.7	89.0	86.4	169
30-34	89.9	89.2	85.0	205
35-39	91.5	89.6	84.8	176
40-44	85.2	83.9	77.3	144
45-49	83.2	81.6	76.7	137
50-54	80.5	79.0	70.7	111
55+	77.1	72.4	68.9	132
Residence				
Mainland	85.7	84.0	79.0	1154
Dar es Salaam	82.8	82.8	82.8	63
Other urban	98.9	98.9	95.4	234
Rural	82.3	80.1	74.3	857
Zanzibar	90.1	90.1	88.8	30
Region				
Dodoma	95.6	95.1	94.3	121
Arusha	85.8	75.4	72.0	54
Kilimanjaro	98.2	98.2	98.2	50
Tanga	98.2	98.2	96.4	58
Morogoro	98.2	96.4	94.2	69
Coast	(67.0)	(67.0)	(63.9)	17
Lindi	(90.1)	(90.1)	(87.1)	32
Mtwara	95.6	95.6	95.6	61
Ruvuma	100.0	100.0	98.5	44
Iringa	89.4	84.6	71.5	73
Mbeya	91.8	90.1	83.9	59
Singida	(83.0)	(82.2)	(79.4)	36
Tabora	(88.0)	(78.4)	(75.7)	38
Rukwa	(82.5)	81.3	77.0	32
Kigoma	93.3	90.7	85.7	50
Shinyanga	57.3	57.3	49.0	92
Kagera	76.3	76.3	76.3	78
Mwanza	64.2	64.2	44.1	82
Mara	83.8	80.2	63.8	44
Education				
No education	68.4	64.1	55.5	297
Primary incomplete	88.0	86.6	80.6	357
Completed primary	92.7	92.4	89.8	424
Secondary/Higher	99.4	99.4	98.7	106
Total	85.8	84.2	79.3	1184
Note: Rates shown in parentheses are based on 25-49 men, whereas an asterisk means the rate is based on fewer than 25 men and has been suppressed. ${ }^{1}$ Includes pill, IUD, injection, vaginal methods (foaming tablets/diaphragm/ foam/jelly), condom, female sterilisation, and male sterilisation.				

Table 10.6 indicates that 45 percent of currently married men had ever used family planning methods. Thirty-five percent of currently married men had ever used traditional methods, and 24 percent had ever used modem contraceptives. Periodic abstinence (23 percent) and withdrawal (19 percent) were the most commonly used traditional methods. Fourteen percent had ever used condoms. Ever use of contraceptive methods among all men is comparable to that of currently married men. Twenty percent had ever used a modern method, mostly a condom (15 percent). Traditional methods were less commonly reported by younger, unmarried men compared to married men. For instance, 27 percent of all men ever used traditional methods, compared to 35 percent of currently married men.

Table 10.6 Ever use of contraception
Percentage of all men and of currently married men who have ever used any contraceptive method, by specific method and age, Tanzania 1991/92

Age	Modem methods								Traditional methods					
	Any method	Any modem method	Pill	IUD	$\begin{aligned} & \text { In } \\ & \text { jec- } \\ & \text { tion } \end{aligned}$	Diaphragm/ foam/ jelly	Condom	Female steri- lisa- tion	Any trad. method	Periodic abstinence	Mucus method	With-drawa]	Oher	Number of men
ALL MEN														
15-19	14.0	9.7	0.4	0.0	0.4	0.5	8.7	0.0	8.9	2.6	0.8	6.9	0.0	499
20-24	37.5	27.1	2.7	0.0	0.3	0.6	25.6	1.5	25.5	11.6	3.6	16.7	1.7	308
25-29	45.8	23.2	6.9	0.0	0.0	0.2	21.2	0.3	32.8	16.7	6.8	19.8	1.8	262
30-34	46.8	22.7	11.7	0.6	1.3	0.0	19.0	0.0	42.8	32.7	16.5	23.9	1.8	256
35-39	51.2	29.2	14.6	4.2	0.7	1.3	20.3	1.1	41.1	24.7	4.7	22.2	5.3	201
40-44	43.3	22.2	11.7	3.1	1.6	1.4	12.2	5.1	34.0	20.4	4.5	17.7	2.3	159
45-49	40.8	26.5	14.4	0.8	0.0	0.0	11.3	5.2	25.1	16.5	3.9	15.6	1.8	155
50-54	39.8	20.3	10.0	0.0	1.8	0.0	2.8	7.4	29.6	10.7	7.2	19.2	4.5	127
55+	34.7	14.0	4.4	0.9	2.1	0.9	3.9	7.9	25.9	17.6	4.9	13.2	0.3	148
Total	36.0	20.4	7.0	0.8	0.7	0.5	14.8	2.1	27.0	15.3	5.4	16.0	1.8	2114
CURRENTLY MARRIED MEN														
15-19	*	*	*	*	*	*	*	*	*	*	*	*	*	9
20-24	37.4	24.6	3.8	0.0	0.0	0.0	23.0	0.0	33.0	21.7	11.0	15.9	5.2	100
25-29	44.9	20.9	6.6	0.0	0.0	0.3	18.8	0.0	33.9	19.3	8.2	19.7	2.8	169
30-34	50.1	22.5	11.9	0.8	1.4	0.0	18.7	0.0	45.7	35.0	19.7	27.1	1.9	205
35-39	53.6	29.3	15.5	3.4	0.8	0.3	20.2	1.3	44.0	26.3	5.3	23.1	5.2	176
40-44	42.7	22.4	12.4	3.4	1.7	1.5	11.5	4.8	33.3	22.4	4.9	15.3	2.5	144
45-49	43.4	29.4	16.2	0.9	0.0	0.0	12.3	5.9	26.1	18.6	4.3	15.3	2.0	137
50-54	44.7	23.3	11.4	0.0	2.0	0.0	3.2	8.5	33.0	12.2	8.2	21.1	5.1	111
55+	36.4	15.3	4.6	1.0	2.3	1.0	4.1	8.9	26.5	19.4	5.4	12.6	0.0	132
Total	45.0	23.5	10.7	1.3	1.0	0.4	14.4	3.2	35.4	22.9	8.8	19.3	3.0	1184

Note: An asterisk means the rate is based on fewer than 25 men and has been suppressed.

Current Use of Contraception

About 22 percent of currently married men were using family planning methods at the time of the survey (see Table 10.7). Use of traditional methods was reported by 11 percent of currently married men and use of modem methods by about 10 percent. The pill and condoms were reported to be used by 4 percent of currently married men and periodic abstinence by 8 percent. Use of modern contraceptives was low among younger men (below 20 years).

Table 10.7 Current use of contraception by age
Percent distribution of all men and of currently married men by contraceptive method currently used, according to age, Tanzania 1991/92

Age	Modern methods						Traditional methods					Total Number	
	Any method	Any modern mechod	Pill		Condom	Fernale steri- lisa- tion	Any trad. method	Periodic abstinence	Mucus method	With drawal	Other		
ALL MEN													
15-19	4.6	3.7	0.3	0.0	3.3	0.0	0.9	0.9	0.0	0.0	0.0	4.6	499
20-24	9.9	7.3	0.3	0.0	7.0	0.0	2.6	2.1	0.0	0.5	0.0	9.9	308
25-29	17.5	8.3	2.3	0.0	5.9	0.0	9.2	6.4	0.4	1.5	0.9	17.5	262
30-34	20.4	11.9	5.5	0.6	5.8	0.0	8.5	7.0	0.0	0.8	0.6	20.4	256
35-39	30.0	14.0	3.8	0.0	9.0	1.1	16.0	11.8	0.4	2.7	1.1	30.0	201
40-44	21.3	11.1	5.2	0.5	3.3	2.1	10.2	6.7	0.0	2.5	0.9	21.3	159
45-49	20.7	12.5	5.4	0.0	2.7	4.4	8.3	5.5	0.0	2.8	0.0	20.7	155
50-54	21.0	9.0	2.5	0.0	0.0	6.5	12.0	3.0	0.0	6.4	2.6	21.0	127
55+	7.2	2.9	0.0	0.0	1.7	1.3	4.2	2.7	1.0	0.6	0.0	7.2	148
Total	14.9	8.2	2.4	0.1	4.7	1.1	6.7	4.6	0.2	1.4	0.5	14.9	2114
CURRENTLY MARRIED MEN													
15-19	*	*	*	*	*	*	*	*	*	*	*	*	9
20-24	12.4	4.3	0.3	0.0	4.0	0.0	8.1	6.6	0.0	1.5	0.0	12.4	100
25-29	20.9	7.8	3.6	0.0	4.2	0.0	13.1	8.7	0.6	2.4	1.4	20.9	169
30-34	23.9	13.4	6.8	0.8	5.7	0.0	10.5	8.7	0.0	1.0	0.8	23.9	205
35-39	32.9	14.7	4.4	0.0	9.0	1.3	18.3	13.5	0.5	3.1	1.2	32.9	176
40-44	22.6	11.4	5.7	0.6	2.8	2.3	11.2	7.4	0.0	2.8	1.0	22.6	144
45-49	22.9	13.6	6.1	0.0	2.6	4.9	9.3	6.2	0.0	3.1	0.0	22.9	137
50-54	24.1	10.3	2.8	0.0	0.0	7.4	13.8	3.5	0.0	7.3	3.0	24.1	111
55+	7.0	3.0	0.0	0.0	1.6	1.4	4.0	3.0	1.1	0.0	0.0	7.0	132
Total	21.8	10.4	4.2	0.2	4.1	1.9	11.4	7.7	0.3	2.5	0.9	21.8	1184

Note: An asterisk means the rate is based on fewer than 25 men and has been suppressed.

Figure 10.2 shows current use of contraceptive methods among currently married males and females. Compared to women, men were twice as likely to report that they were currently using contraceptive methods. The reported current use of modem contraceptives was 3 percentage points higher among men. However, the largest differences were in the use of traditional methods; men were about 200 percent more likely to report that they were using traditional methods than women. The observed differences may be due to a number of reasons. Women were asked about their own contraceptive use, while men were asked about use of methods for both themselves and their wives. The high prevalence among men may indicate use of
contraceptives by men with women other than their wives. It is also possible that women did not mention some of the methods that were primarily used by their spouse. This may explain the difference in reported condom use. Regarding traditional methods, the main difference concerns abstinence, which is much more commonly reported by men. Different interpretations of this method may play a role as well.

Figure 10.2 Current Use of Contraceptives Among Currently Married Men and Women

Table 10.8 shows the percent distribution of currently married men currently using contraceptives by rural/urban residence, region, educational status, and number of living children. Men in urban areas are more than twice as likely to use modem methods than their counterparts in rural areas. Conversely, use of traditional methods is more common in rural areas than in urban areas. There were significant differences in the prevalence of current contraceptive use among the regions. For example, use of modern methods ranges from 1 percent in Mwanza to 29 percent in Kilimanjaro. These differences need to be interpreted cautiously because of the small numbers of men covered.

Contraceptive use among men with formal education is much higher than among men with no education. Contraceptive use increases with increasing level of education from 7 percent among men with no education to 23 percent among men with primary education and to 52 percent among men with secondary or higher education. A similar pattem is observed for modern and traditional contraceptive methods. Furthermore, contraceptive use varies according to the number of living children. Only 1 percent of currently married men with no living child reported using family planning methods. Use of both modern and traditional methods increases with increasing number of living children up to about 3 above which it falls slightly.

Table 10.8 Curent use of contraception by background characteristics
Percent distribution of currently married men by contraceptive method currently used, according to selected background characteristics, Tanzania 1991/92

Background characterisuc	Modern melhods						Traditional melhoda					TotalNumber of men	
	Any method	Any modern method	Pill	IUD	Condam	Female steri-lisation	Any tred. meth.	Periodic abstinence	Mucus melhod	Wilh-draw${ }^{a}$	Oher		
Residence													
Mainland	22.3	10.5	4.3	0.2	4.2	1.9	11.7	7.9	0.3	2.6	0.9	22.3	1153
Dar es Salaam	30.1	25.3	6.7	0.0	14.8	3.8	4.8	4.8	0.0	0.0	0.0	30.1	63
Other urban	25.9	16.4	7.8	0.0	8.4	0.3	9.4	4.5	0.6	3.3	1.0	25.9	234
Rural	20.7	7.8	3.1	0.3	2.2	2.2	12.9	9.1	0.2	2.5	1.0	20.7	857
Zanzibar	4.1	4.1	1.4	0.0	1.4	1.4	0.0	0.0	0.0	0.0	0.0	4.1	30
Region													
Dodoma	27.5	14.0	8.2	0.0	5.8	0.0	13.5	7.2	0.0	6.3	0.0	27.5	121
Arusha	39.2	12.3	1.7	0.0	6.8	3.8	26.9	14.2	0.0	9.9	2.8	39.2	54
Kilimanjaro	50.8	28.5	9.9	5.0	4.4	9.3	22.3	18.9	1.8	1.7	0.0	50.8	50
Tanga	60.7	21.5	5.7	0.0	14.1	1.8	39.2	30.2	0.0	3.9	5.1	60.7	58
Morogoro	23.7	10.0	3.9	0.0	6.1	0.0	13.7	6.6	1.5	2.5	3.0	23.7	69
Coast	(7.1)	(5.0)	(5.0)	(0.0)	(0.0)	(0.0)	(2.1)	(1.4)	(0.0)	(0.8	(0.0)	(7.1)	17
Lindi	(12.4)	(10.3)	(6.4)	(0.0)	(2.0)	(1.9)	(2.0)	(0.0)	(0.0)	(2.0)	(0.0)	(12.4)	32
Mtwara	2.7	2.7	2.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.7	61
Ruvuma	5.1	5.1	0.0	0.0	3.0	2.1	0.0	0.0	0.0	0.0	0.0	5.1	44
Iringa	18.2	11.7	10.4	0.0	1.3	0.0	6.5	1.6	0.0	4.9	0.0	18.2	73
Mbeya	20.0	8.1	0.0	0.0	6.1	2.0	11.9	6.1	2.4	3.4	0.0	20.0	59
Singida	(23.6)	(6.7)	(0.0)	(0.0)	(6.7)	(0.0)	(16.9)	(16.9)	(0.0)	(0.0)	(0.0)	(23.6)	36
Tabora	(18.9	(3.1)	(1.0)	(0.0)	(2.1)	(0.0)	(15.7)	(10.9)	(0.0)	(1.8)	(3.1)	(18.9)	38
Rukwa	(16.9)	(9.0)	(3.2)	(0.0)	(3.5)	(2.3)	(7.8)	(3.2)	(0.0)	(3.0)	(1.6)	(16.9)	32
Kigoma	21.3	4.5	2.9	0.0	1.7	0.0	16.8	14.2	0.0	0.0	2.6	21.3	50
Shinyanga	10.7	6.0	4.3	0.0	1.7	0.0	4.7	4.7	0.0	0.0	0.0	10.7	92
Kagera	25.3	10.7	0.0	0.0	0.0	10.7	14.6	9.7	0.0	3.9	1.0	25.3	78
Mwanza	3.5	1.4	1.4	0.0	0.0	0.0	2.1	2.1	0.0	0.0	0.0	3.5	82
Mara	17.8	7.0	7.0	0.0	0.0	0.0	10.9	8.1	0.0	1.4	1.3	17.8	44
Education													
No education	7.4	1.6	0.7	0.0	0.0	0.9	5.9	4.2	0.3	1.0	0.4	7.4	297
Primary incomplete	16.2	5.0	1.9	0.0	1.1	2.0	11.2	5.8	0.7	3.1	1.5	16.2	357
Completed primary	29.0	16.0	6.4	0.2	8.3	1.1	13.1	10.8	0.0	1.6	0.7	29.0	424
Secondary/Higher	52.0	30.8	12.8	1.5	8.7	7.8	21.2	11.9	0.0	8.1	1.2	52.0	106
Number of children													
0	1.1	1.1	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	96
1	21.5	8.4	4.1	0.0	4.3	0.0	13.1	7.5	0.8	2.9	1.9	21.5	169
2	18.0	4.5	1.3	0.0	3.2	0.0	13.6	11.2	0.7	1.3	0.3	18.0	160
3	32.6	16.3	9.2	1.0	6.1	0.0	16.3	14.0	0.0	1.6	0.7	32.6	158
$4+$	23.4	12.4	4.1	0.1	4.4	3.7	10.9	6.5	0.1	3.3	1.0	23.4	601
Total	21.8	10.4	4.2	0.2	4.1	1.9	11.4	7.7	0.3	2.5	0.9	21.8	1184

Note: Rates shown in parentheses are based on $25-49$ men, whereas an asterisk means the rate is based on fewer than 25 men and has been suppressed.

Sources of Family Planning Methods

All current users of modern methods of family planning were asked to report the source from which they most recently obtained their supplies. Table 10.9 shows that 70 percent of modern contraceptive users obtained their last supplies from public (government) health facilities, of which half were dispensaries. Seventeen percent of users obtained contraceptives from private medical facilities, and only 9 percent obtained their last contraceptive supplies from either private shops or friends and relatives. As observed in Chapter 4, these findings indicate that public (govemment) health facilities are the main source of contraceptive supplies in Tanzania.

Table 10.9 Source of supply for modern contraceptive methods

Percent distribution of current users of modem contraceptive methods by most recent source of supply, according to specific methods, Tanzania 1991/92

\left.| | | | All |
| :--- | ---: | ---: | ---: |
| Source of supply | Pill | Condom | |
| methods | | | |$\right]$| | | | |
| :--- | ---: | ---: | ---: |
| Public sector | 94.7 | 63.8 | 69.8 |
| Consultant hospital | 1.5 | 6.8 | 6.4 |
| Regional hospital | 4.9 | 6.5 | 7.7 |
| District hospital | 26.3 | 4.8 | 11.1 |
| Health centre | 51.2 | 27.2 | 10.3 |
| Dispensary | 0.0 | 3.8 | 2.1 |
| Parastatal health facility | 0.0 | 3.8 | 2.1 |
| Village healhh post/Worker | | | |
| | 5.3 | 14.0 | 17.3 |
| Medical private sector | 3.5 | 0.0 | 8.4 |
| Religious org. facility | 0.0 | 3.6 | 2.5 |
| Private doctor/Hospital | 0.0 | 7.5 | 4.3 |
| Pharmacy/Medical store | 1.9 | 2.8 | 2.1 |
| UMATI CBD worker | | | |
| | 0.0 | 15.8 | 9.3 |
| Other private sector | 0.0 | 8.6 | 4.9 |
| Shop | 0.0 | 7.2 | 4.4 |
| Friends, relatives | 0.0 | 2.7 | 1.5 |
| Other | 0.0 | 3.8 | 2.1 |
| Missing | | | |
| Total | 100.0 | 100.0 | 100.0 |
| Number | 50 | 98 | 174 |

UMATI CBD = Family Planning Association of Tanzania community-based distribution

Men who are current users of contraceptive methods were asked how long it takes to travel from their home to the place where they obtain the method. Nonusers were asked if they knew a place where they could obtain a modern method and, if so, how long it would take to get there. The results are shown in Table 10.10.

Table 10.10 Time to source of supply for modern contraceptive methods
Percent distribution of men who are currently using a modern contraceptive method, of men who are not using a modem method, and of men who know a method, by time to reach a source of supply, according to urbanrural residence, Tanzania 1991/92

	Men who are currently using a modern method			Men who are not using a modern method			Men who know a contraceptive method		
to source	Urban	Rural	Total	Urban	Rural	Total	Urban	Rural	Total
0.14	39.8	24.6	31.4	11.4	4.6	6.3	16.4	7.5	10.1
15-29	29.1	9.9	18.4	14.8	4.0	6.6	19.1	5.7	9.5
30-59	13.6	18.4	16.2	17.0	7.4	9.7	18.2	10.3	12.6
60+	11.3	40.9	27.7	12.6	29.8	25.5	14.4	39.0	31.8
Does not know time	0.0	0.0	0.0	1.8	0.3	0.6	1.8	0.3	0.7
Does not know source	0.0	0.0	0.0	24.3	38.2	34.8	15.4	21.4	19.6
Not stated	6.2	6.3	6.2	18.2	15.8	16.4	14.7	16.0	15.6
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of men	77	96	173	479	1460	1939	479	1175	1654

Among current users of contraceptive methods, 69 percent of men in urban areas and 35 percent of men in rural areas were within 30 minutes of the place from which they obtain their methods. Eleven percent of users in urban areas and 41 percent of men in rural areas need more than one hour to reach the source of contraceptive supplies.

Among men who are not currently using a modern method, 24 percent of men in urban areas and 38 percent of men in rural areas did not know any place where they could obtain contraceptives; 26 percent of urban men and 9 percent of those in rural areas reported that they were within 30 minutes from their source of contraceptive methods. Even among men who know of at least one family planning method, 20 percent said they did not know a place where they can get modern contraceptives, and only 20 percent were within 30 minutes of the source of modern methods.

As noted in Chapter 4, these findings indicate that contraceptive users in rural areas cover longer distances to reach their source of supplies. More service delivery points need to be established in rural areas to reduce the distances covered before reaching sources of supplies. The findings in this section suggest that apart from lack of knowledge of contraceptive methods, knowledge of the place where methods could be obtained is also lacking. This particularly pertains to men not currently using modern methods.

Intention to Use Family Planning Methods Among Nonusers

Currently married men who were not using a modern contraceptive method at the time of the survey were asked if they were planning to do something to prevent their partners from getting pregnant in the future. According to the results, which are shown in Table 10.11, more than half (56 percent) of men currently not using contraception do not intend to use contraceptive methods in the future. The proportion of men not intending to use contraceptives in the future increases with increasing number of living children. This suggests that men with a large number of living children are more likely to have a negative attitude towards family planning. Therefore, family planning education and counselling should be focused on this population.

Table 10.11 Future use of contrac						
Percent distribution of currently married men who are not using a contraceptive method by past experience with contraception and intention to use in the furure, according to number of living children, Tanzania 1991/92						
Past experience	Number of living children ${ }^{1}$					Total
and future intentions	0	1	2	3	$4+$	
Never used contraception						
Intend to use in next 12 months	3.7	8.9	10.1	17.7	8.8	9.5
Intend to use later	10.1	5.5	3.8	4.2	2.7	4.2
Unsure as to timing	2.3	0.0	0.0	0.4	0.4	0.5
Unsure as to intention	24.5	12.1	13.5	15.0	8.8	12.2
Do not intend to use	36.8	41.1	35.0	44.1	48.1	43.7
Missing	0.0	0.0	0.8	1.0	0.2	0.3
Previously used contraception						
Intend to use in next 12 months	1.4	13.5	14.8	5.6	8.7	9.1
Intend to use later	9.9	10.0	11.3	2.4	2.4	5.5
Unsure as to timing	0.0	0.7	0.0	0.0	0.9	0.5
Unsure as to intention	1.8	0.3	1.7	0.4	1.2	1.1
Do not intend to use	7.0	5.4	9.1	7.1	16.8	11.9
Missing	2.4	2.7	0.0	2.1	1.1	1.4
Total	100.0	100.0	100.0	100.0	100.0	100.0
All currently married nonusers						
Intend to use in next 12 monhs	5.0	22.3	24.9	23.3	17.5	18.6
Intend to use later	20.0	15.5	15.1	6.6	5.1	9.7
Unsure as to timing	2.3	0.7	0.0	0.4	1.2	1.0
Unsure as to intention	26.4	12.4	15.2	15.5	10.0	13.3
Do not intend to use	43.8	46.5	44.0	51.2	64.9	55.6
Missing	2.4	2.7	0.8	3.1	1.3	1.8
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number of men	95	133	131	106	461	926
${ }^{1}$ Includes current pregnancy						

Currently married men who indicated that they did not intend to use modem contraceptives were asked to state their reasons. Over half of men (52 percent) said that they did not intend to use modem contraception because they want children (see Table 10.12). Other reasons given were "their wives were menopausal or had a hysterectomy" (21 percent), "lack of knowledge" (9 percent), "opposed to family planning" (4 percent), and "infrequent sex" (4 percent). Men below 30 years were more likely not to use contraceptives because they want children. On the other hand, men above 30 years of age were more likely not to use contraceptive methods because their wives were menopausal or had a hysterectomy. Lack of knowledge and opposition to family planning were also more common among men age 30 years and over.

Table 10.12 Reasons for not using contraception			
Percent distribution of men who are not using a contraceptive method and who do not intend to use in the future by main reason for not using, according to age, Tanzania 1991/92			
	Age		Total
contraception	<30	$30+$	
Wants children	82.9	45.1	52.1
Lack of knowledge	3.7	10.1	8.9
Partner opposed	0.3	0.5	0.4
Side effects	1.8	1.0	1.2
Health concerns	0.0	0.1	0.1
Hard to get mechods	0.0	0.3	0.3
Religion	0.7	2.4	2.0
Opposed to family planning	1.9	4.6	4.1
Fatalistic	1.8	1.5	1.6
Other people opposed	0.0	0.1	0.1
Infrequent sex	2.6	3.7	3.5
Difficult to be pregnant	0.0	0.1	0.0
Menopausal, had hysterectomy	0.3	25.8	21.1
Inconvenient	0.0	0.7	0.6
Not married	0.3	0.0	0.1
Other	0.0	2.4	1.9
Don't know	3.7	1.7	2.0
Total	100.0	100.0	100.0
Number	95	419	515

Table 10.13 Preferred method of contraception for future use

Percent distribution of currently married men who are not using a contraceptive method but who intend to use in the future by preferred method, according to whether they intend to use in the next 12 months or later, Tanzania 1991/92

	Intend to use		
	In next	After	
Preferred method of contraception	12	12	
months	months	Total 1	
Pill	44.7	34.5	40.2
IUD	2.4	0.5	1.8
Injections	7.8	13.8	9.4
Condom	12.8	13.1	12.8
Female sterilisation	8.4	10.7	9.9
Male sterilisation	0.7	0.0	0.5
Periodic abstinence	16.3	22.8	18.5
Mucus method	0.6	0.0	0.4
Withdrawal	3.4	0.0	2.1
Other	0.0	1.2	0.4
Missing	2.9	3.5	3.9
Total	100.0	100.0	100.0
Number	172	90	274

${ }^{1}$ Includes 9 men who were unsure as to timing and 3 missing cases

Nonusers who said that they did intend to use family planning in the future were asked to state the method they would prefer to use. Table 10.13 shows that 40 percent of them preferred to use the pill, and 19 percent preferred periodic abstinence. Other methods preferred were condom (13 percent), female sterilization (10 percent), injections (9 percent), withdrawal (2 percent), and IUD (2 percent). Less than one percent preferred male sterilization or the mucus method. Men who intend to use in the next 12 months were more likely to say they wanted to use the pill.

Approval of Family Planning

All male respondents were asked if they had heard family planning messages on radio or television in the month preceding the survey (see Table 10.14). A majority of men (68 percent) said they did not hear any family planning message on the radio or television. Thirty-one percent reported that they had heard a message on family planning on the radio, and less than one percent said that they had heard family planning messages on television. Even in Zanzibar where there is a television system, less than 3 percent of men reported hearing family planning messages on television. This indicates that the television system is not used to promote use of family planning methods.

Table 10.14 Family planning messages on radio and television
Percent distribution of all men by whether they have heard a family planning message on radio or on television in the month preceding the survey, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Heard family plarning message on radio or on television				Missing	Total	Number
	Neither	Radio only	Television only	Both			
Residence							
Mainland	67.5	31.5	0.5	0.5	0.1	100.0	2063
Dar es Salaam	65.6	34.4	0.0	0.0	0.0	100.0	151
Other urban	56.6	40.7	1.5	1.2	0.0	100.0	402
Rural	70.6	28.7	0.2	0.3	0.1	100.0	1510
Zanzibar	69.9	19.6	2.9	7.6	0.0	100.0	51
Region							
Dodoma	60.5	39.5	0.0	0.0	0.0	100.0	173
Arusha	65.9	34.1	0.0	0.0	0.0	100.0	124
Kilimanjaro	43.5	52.8	2.2	1.5	0.0	100.0	128
Tanga	40.4	59.6	0.0	0.0	0.0	100.0	90
Morogoro	56.6	40.1	0.0	3.2	0.0	100.0	120
Coast	67.5	31.2	0.0	1.3	0.0	100.0	34
Lindi	72.2	27.8	0.0	0.0	0.0	100.0	47
Mtwara	95.1	4.9	0.0	0.0	0.0	100.0	109
Ruvuma	59.5	40.5	0.0	0.0	0.0	100.0	70
Iringa	67.4	32.6	0.0	0.0	0.0	100.0	117
Mbeya	82.6	16.0	1.4	0.0	0.0	100.0	103
Singida	64.9	35.1	0.0	0.0	0.0	100.0	67
Tabora	80.4	19.6	0.0	0.0	0.0	100.0	73
Rukwa	70.9	26.3	0.0	1.8	1.1	100.0	51
Kigoma	78.6	20.7	0.0	0.0	0.7	100.0	79
Shinyanga	69.8	27.6	1.4	0.6	0.6	100.0	177
Kagera	92.5	7.5	0.0	0.0	0.0	100.0	121
Mwanza	74.8	22.6	2.0	0.6	0.0	100.0	143
Mara	43.9	55.3	0.0	0.8	0.0	100.0	85
Education							
No education	85.8	13.7	0.4	0.0	0.1	100.0	418
Primary incomplete	68.1	30.7	0.6	0.5	0.2	100.0	625
Completed primary	63.5	35.1	0.4	1.0	0.1	100.0	878
Secondary/Higher	45.0	53.0	1.1	0.9	0.0	100.0	192
Total	67.6	31.2	0.5	0.6	0.1	100.0	2114

Men in urban areas were more likely to hear family planning messages on the radio than those in rural areas. With the exception of Tanga, Kilimanjaro, and Mara, a majority of men in all regions had not heard family planning messages on the radio or television. Uneducated men are more likely not to hear family planning messages than educated men.

Table 10.15 presents results from a question on whether men believe it is acceptable to use radio or television to disseminate family planning messages. A majority of men (74 percent) think it is acceptable to do so. The acceptability of family planning messages is high across all ages, although the proportion of men stating that family planning messages on the radio or television are not acceptable increases among men above 39 years of age. The acceptability of family planning messages on the radio or television is relatively low in rural areas. A substantial proportion of men (more than 20 percent) in Zanzibar, Shinyanga, and Iringa said it was not acceptable to disseminate family planning messages on radio or television. Educated men are more likely to accept family planning messages on radio or television than uneducated men.

To obtain more direct information about the acceptability of family planning methods, currently married men who are not sterilized and who know about modem contraceptive methods were asked if they approve of the use of family planning methods (see Table 10.16). In a majority of couples (63 percent) both men and their wives approve of family planning, whereas in only 8 percent of couples both the man and wife disapproved of family planning methods. Approval of family planning varies tremendously with background characteristics. Men below 20 years of age were less likely to approve of family planning than other men. Educated men were more likely to approve family planning than uneducated men and also to know their wives' opinion of family planning.

Table 10.15 Acceptability of the use of mass media for disseminating family planning messages

Percentage of men who believe that it is acceptable to have messages about family planning on radio or television, by selected background characteristics, Tanzania 1991/92

Background characteristic	Acceptable	Not acceptable	Don't know/ Missing	Total	Number
Age					
15-19	61.0	9.1	29.9	100.0	499
20-24	79.8	8.7	11.5	100.0	308
25-29	84.6	8.3	7.0	100.0	262
30-34	78.2	11.9	9.8	100.0	256
35-39	82.4	9.8	7.9	100.0	201
40-44	75.1	17.6	7.4	100.0	159
45-49	71.0	19.6	9.4	100.0	155
50-54	68.4	19.4	12.2	100.0	127
55+	69.4	18.6	11.9	100.0	148
Residence					
Mainland	73.7	11.8	14.6	100.0	2063
Dar es Salaam	94.1	0.6	5.3	100.0	151
Other urban	83.6	8.1	8.3	100.0	402
Rural	69.0	13.9	17.2	100.0	1510
Zanzibar	71.0	23.2	5.9	100.0	51
Reglon					
Dodoma	77.4	16.5	6.1	100.0	173
Arusha	99.4	0.6	0.0	100.0	124
Kilimanjaro	98.7	1.3	0.0	100.0	128
Tanga	96.1	3.9	0.0	100.0	90
Morogoro	78.7	14.9	6.4	100.0	120
Coast	81.8	8.0	10.2	100.0	34
Lindi	76.9	13.9	9.2	100.0	47
Mtwara	59.9	10.6	29.4	100.0	109
Ruvuma	76.3	10.8	12.9	100.0	70
Iringa	72.2	21.4	6.4	100.0	117
Mbeya	78.4	11.9	9.7	100.0	103
Singida	78.3	13.5	8.2	100.0	67
Tabora	63.2	14.6	22.2	100.0	73
Rukwa	78.0	16.4	5.7	100.0	51
Kigoma	72.5	2.8	24.7	100.0	79
Shinyanga	41.1	22.8	36.0	100.0	177
Kagera	53.1	12.4	34.6	100.0	121
Mwanza	49.4	19.4	31.2	100.0	143
Mara	71.9	12.0	16.1	100.0	85
Education					
No education	50.9	22.3	26.8	100.0	418
Some primary	69.4	13.9	16.7	100.0	625
Completed primary	83.2	7.6	9.1	100.0	878
Secondary/Higher	92.7	3.9	3.4	100.0	192
Total	73.6	12.0	14.4	100.0	2114

Table 10.16 Attitudes of couples toward family planning
Among currently married non-sterilised men who know a contraceptive method, the percentage who approve of family planning, by their perception of their wife's attitude and selected background characteristics, Tanzania 1991/92

Background characteristic	Both approve	Respondent approves		Respondent disapproves		Both disapprove	Missing	Total	Number
		Wife disapproves	$\begin{gathered} \text { Unsure } \\ \text { of } \\ \text { wife } \end{gathered}$	Wife approves	Unsure of wife				
Age									
15-19	*	*	*	*	*	*	*	100.0	8
20-24	68.4	3.3	4.2	9.7	5.3	5.5	3.5	100.0	82
25-29	66.0	4.5	9.1	4.9	1.4	5.5	8.6	100.0	152
30-34	67.4	1.5	7.5	4.3	4.8	6.5	8.0	100.0	184
35-39	71.1	5.5	6.8	2.6	2.8	8.7	2.5	100.0	159
40-44	65.8	1.3	7.7	5.3	11.2	5.0	3.7	100.0	120
45-49	53.5	3.4	15.4	2.6	12.8	9.8	2.4	100.0	107
50-54	53.0	10.3	9.6	4.0	1.9	14.3	6.8	100.0	81
55+	52.2	17.1	7.3	2.9	7.0	9.2	4.2	100.0	100
Residence									
Mainland	63.9	5.2	8.3	4.4	5.6	7.2	5.4	100.0	967
Dar es Salaam	(93.1)	(0.0)	(2.4)	(0.0)	(0.0)	(1.8)	(2.6)	(100.0)	50
Other urban	64.2	8.6	11.0	3.1	2.7	5.1	5.3	100.0	231
Rural	61.6	4.4	7.8	5.2	7.0	8.3	5.6	100.0	686
Zanzjbar	(41.6)	(6.6)	(16.6)	(1.5)	(4.4)	(29.4)	(0.0)	(100.0)	27
Education									
No education	44.2	6.3	13.4	5.2	11.7	13.5	5.8	100.0	200
Primary incomplete	58.2	9.1	7.5	4.1	7.8	8.8	4.5	100.0	307
Completed primary	72.9	2.6	6.2	4.7	2.1	5.3	6.2	100.0	388
Secondary/Higher	79.9	1.4	11.0	1.8	0.0	3.2	2.8	100.0	97
Total	63.3	5.2	8.5	4.3	5.6	7.8	5.2	100.0	993

Note: Rates shown in parentheses are based on 25-49 men, whereas an asterisk means the rate is based on fewer than 25 men and has been suppressed.

10.3 Nuptiality and Sexual Intercourse

Factors other than contraception that affect a woman's risk of becoming pregnant are considered in this section. This includes nuptiality, as well as more direct measures of the beginning of exposure to pregnancy and the level of exposure, i.e., age at first sexual intercourse and the frequency of intercourse.

Marital Status

Table 10.17 shows the current marital status of the eligible men at the time of the survey. The term "married" refers to civil, religious, or traditional marriage, or just living together. Men who are widowed, divorced, or not living together (separated) are classified as "ever married" or "ever in union." Very few teenage men have married (about 2 percent). Among men 20-24 year, 37 percent are ever married and above

Table 10.17 Current marital status by age

Percent distribution of men by current marital status, according to age, Tanzania 1991/92

	Marital status					
Age group	Never married	Married, monoga- mous	Married, polyga- mous	Widowed/ Divorced	Total	Number of men
15.19	98.0	1.8	0.0	0.2	100.0	499
20.24	63.3	30.2	2.1	4.4	100.0	308
$25-29$	30.0	57.1	7.6	5.4	100.0	262
30.34	13.3	69.1	11.1	6.5	100.0	256
35.39	4.5	74.6	13.1	7.8	100.0	201
$40-44$	3.2	75.4	15.7	5.7	100.0	159
$45-49$	1.1	70.4	18.3	10.3	100.0	155
$50-54$	3.7	71.0	16.3	9.0	100.0	127
$55+$	1.1	65.5	23.8	9.6	100.0	148
Total	38.7	47.0	9.0	5.3	100.0	2114

age 24,70 percent or more are ever married. About 56 percent of men are currently married (compared to 54 percent observed from the 1988 Population Census), of which 47 percent are in monogamous unions and 9 percent are in polygamous unions.

Polygyny

Table 10.18 shows the distribution of currently married men in a polygynous union (expressed as a percentage of all married men) by background characteristics. Overall, 16 percent of currently married men are in a polygynous marriage. The proportion of married men in a polygynous union increases with age of the respondents. Polygynous unions are more common in rural areas than in Dar es Salaam or other urban areas. Iringa, Singida, Mara, and Arusha have the highest proportion of married men in a polygynous union and Dar es Salaam, Morogoro, Mtwara, and Kilimanjaro have the lowest proportion. The proportions of educated and uneducated married men in polygynous unions are not significantly different.

The majority of polygynous marriages consisted of one man and two wives; 14 percent of all currently married men had two wives and only 2 percent had three or more wives (table not shown).

Table 10.18 Polygyny
Percentage of currently married men in a polygynous union, by age and selected background characteristics, Tanzania 1991/92

Background characteristic	Total	Number
Age		
15-19	*	9
20-24	11.7	100
25-29	13.8	169
30-34	14.9	205
35-39	17.2	176
40-44	20.6	144
45-49	18.7	137
50+	26.7	243
Residence		
Mainland	16.2	1153
Dar es Salaam	2.6	63
Other urban	13.1	234
Rural	18.0	857
Zanzibar	12.2	30
Region		
Dodoma	16.1	121
Arusha	25.3	54
Kilimanjaro	7.5	50
Tanga	16.7	58
Morogoro	5.3	69
Coast	(9.0)	17
Lindi	(21.4)	32
Mtwara	7.2	61
Ruvuma	16.3	44
Iringa	32.3	73
Mbeya	10.5	59
Singida	(32.2)	36
Tabora	(23.5)	38
Rukwa	(15.7)	32
Kigoma	18.5	50
Shinyanga	21.1	92
Kagera	12.9	78
Mwanza	9.6	82
Mara	29.3	44
Education		
No education	19.9	297
Primary incomplete	16.8	357
Primary completed	12.1	424
Secondary/Higher	18.7	106
Total	16.1	1184

Note: Figures in parentheses are based on 25-49 men, whereas an asterisk means the rate is based on fewer than 25 men and has been suppressed.

Age at First Marriage

Table 10.19 shows the percentage distribution of ever married men by specific exact ages at marriage according to their current age. The overall median age at first marriage among men age 25-49 years is 25 years. Less than 1 percent of ever married men age $20-49$ years were married by 15 years of age. This increased to 4 percent by 18 years, 18 percent by 20 years, 34 percent by 22 years, and 49 percent by 25 years. Hence, 18 percent of respondents got married during adolescence.

Table 10.19 Age at first marriage
Percentage of men who were first married by exact age $15,18,20,22$, and 25 , and median age at first marriage, according to current age, Tanzania 1991/92

Current age	Percentage of men who were first married by exact age:					Percentage who had never married	Number of men	Median age at first marriage
	15	18	20	22	25			
15-19	0.0	NA	NA	NA	NA	98.0	499	a
20-24	0.8	5.1	20.6	NA	NA	63.3	308	a
25-29	0.6	3.0	13.5	25.1	50.6	30.0	262	24.9
30-34	0.2	3.2	13.2	28.7	47.1	13.3	256	25.2
35-39	0.0	3.4	19.7	33.1	46.7	4.5	201	25.2
40-44	0.4	7.2	21.7	43.7	61.0	3.2	159	22.7
45-49	0.4	4.9	19.3	43.3	61.3	1.1	155	23.0
50-54	1.3	3.9	13.0	32.4	52.5	3.7	127	24.0
55+	0.6	5.2	26.7	44.3	48.1	1.1	148	25.1
20-49	0.5	4.3	18.1	33.8	48.9	20.4	1615	-
25-49	0.5	4.2	17.5	34.3	51.7	10.3	1307	24.6

NA $=$ Not applicable
${ }^{\text {a }}$ Omitted because less than 50 percent of the men in the age group x to $x+4$ were first married by age x

The median age at first marriage has not changed appreciably across age cohorts. This suggests that the age at first marriage in Tanzania has not changed significantly over time. However, these findings may be affected by recall problems among older men who are likely to have been married many years ago and hence, less likely to remember the exact age at the time of the first marriage. The comparison of the median age at first marriage for women and men shows that women tend to marry earlier than men. Among women and men aged $25-49$ years, the median age at first marriage was 18 years for women (Table 5.14) and 25 years for men.

Table 10.20 shows the median age at first marriage by urban/rural residence and education. In general, the median age at first marriage does not vary much by residence. Men with no education marry earlier than men with at least some education.

Table 10.20 Median age at first marriage
Median age at first marriage among men age 25-49 years, by current age and selected background characteristics, Tanzania 1991/92

Background characteristic	Current age								$\begin{gathered} \text { Men } \\ \text { age } \\ 20-49 \end{gathered}$	$\begin{gathered} \text { Men } \\ \text { age } \\ 25-49 \end{gathered}$
	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55+		
Residence										
Mainland	a	24.9	25.3	25.2	22.6	23.0	24.0	25.2	25.1	24.6
Dar es Salaam	a	a	26.7	26.4	21.3	25.3	22.8	18.2	a	a
Other urban	a	a	29.3	25.3	25.6	25.4	28.0	22.0	a	a
Rural	a	24.0	23.4	25.0	22.5	22.0	23.5	25.3	a	23.6
Zanzjbar	a	a	24.2	20.7	27.8	20.8	25.0	20.5	a	23.7
Education										
No education	19.0	a	21.3	24.0	20.5	20.8	24.8	21.8	a	22.1
Primary incomplete	a	22.0	25.4	22.7	22.3	22.8	22.5	25.6	a	22.8
Completed primary	a	a	25.2	25.5	23.6	24.5	28.7	25.2	a	a
Secondary/Higher	a	a	29.4	26.9	25.7	25.4	28.7	25.4	a	a
Total	a	24.9	25.2	25.2	22.7	23.0	24.0	25.1	a	24.6

${ }^{\text {a }}$ Omitted because less than 50 percent of the men in the age group x to $x+4$ were first married by age x

Age at First Sexual Intercourse

Although age at first marriage is commonly used as a proxy for exposure to intercourse, the two events do not necessarily coincide exactly. Sexual relations may begin prior to marriage. To obtain more objective information about this topic, TDHS asked men to report the age at which they first had sexual intercourse (see Table 10.21).

Table 10.21 Age at first sexual intercourse
Percentage of men who had first sexual intercourse by exact age $15,18,20,22$, and 25 , and median age at first intercourse, according to current age, Tanzania 1991/92

		Percentage of men who had first intercourse by exact age:					Percentage who never had intercourse	Number of men
Current age	15	18	20	22	25	Median age at first intercourse		
$15-19$	29.6	NA	NA	NA	NA	39.7	499	a
20.24	26.5	68.1	86.8	NA	NA	6.2	308	16.2
$25-29$	19.4	60.1	79.8	86.1	93.0	2.2	262	16.8
$30-34$	17.2	56.5	78.4	85.0	92.7	0.4	256	17.5
$35-39$	11.6	47.3	76.8	90.2	93.0	0.8	201	18.1
$40-44$	21.2	58.7	77.7	86.8	90.4	0.0	159	16.9
$45-49$	13.9	48.4	75.9	84.6	87.0	0.9	155	18.1
$50-54$	20.3	53.9	74.7	86.4	91.3	1.7	127	17.5
$55+$	17.4	53.7	76.8	86.4	88.2	0.7	148	17.6
$20-49$	19.0	57.1	79.3	87.6	91.6	2.0	1615	17.2
$25-49$	17.2	54.5	77.5	86.5	91.2	1.0	1307	17.5

NA $=$ Not applicable
${ }^{\text {a }}$ Omitted because less than 50 percent of the men in the age group x to $x+4$ had had intercourse by age x

The results show that 19 percent of men aged $20-49$ years have had intercourse by 15 years of age. The percentage of men reporting who had first intercourse increased to 57 percent by 18 years, 79 percent by 20 years, 88 percent by 22 years, and 92 percent by 25 years. The overall median age at first sexual intercourse (among men aged 25-49 years) was 18 years, which is about 7 years less than the median age at first marriage. Adolescent sexuality is not uncommon among men covered by TDHS. Over two-thirds (79 percent) of men aged 20-49 years of age were sexually active by 20 years of age.

Comparing cohorts suggests that there have been slight changes in the median age at first sexual intercourse during the past thirty years (Table 10.21). The median age at first intercourse was 18 years among men age 45 years and above and 16 years among men less than 25 years of age.

The age at initiation of sex seems to be similar in rural and urban areas (Table 10.22). However, the median age at first sexual intercourse is slightly higher among educated men. This suggests that educated men tend to delay sexual relations somewhat compared to less educated counterparts, although differences are small.

Table 10.22 Median age at first intercourse										
Median age at first sexual intercourse among men age 25-49 years, by current age and selected background characteristics, Tanzania 1991/92										
Background characteristic	Current age								$\begin{gathered} \text { Men } \\ \text { age } \\ 20-49 \end{gathered}$	$\begin{gathered} \text { Men } \\ \text { age } \\ 25-49 \end{gathered}$
	20-24	25-29	30-34	35-39	40-44	45-49	50-54	55+		
Residence										
Mainland	16.2	16.8	17.5	18.1	16.8	18.1	17.4	17.6	17.1	17.4
Dar es Salaam	16.8	17.5	17.3	17.1	16.4	18.4	16.4	16.7	16.9	16.9
Other urban	15.5	16.7	17.8	18.5	18.5	18.1	17.5	15.9	17.2	17.7
Rural	16.2	16.7	17.3	17.9	16.8	18.0	18.0	18.2	17.1	17.4
Zanzibar	a	20.9	20.3	16.9	19.8	15.9	20.5	17.3	19.4	18.9
Education										
No education	14.8	15.6	15.9	19.0	15.6	17.3	17.8	17.5	16.8	17.1
Primary incomplete	16.7	16.7	18.2	17.1	18.3	18.2	18.0	17.0	17.7	17.9
Primary completed	16.3	16.8	17.2	18.2	16.8	16.9	18.4	17.4	16.9	17.2
Secondary/Higher	17.3	18.2	18.5	17.8	17.2	18.5	15.0	20.6	18.2	18.3
Total	16.2	16.8	17.5	18.1	16.9	18.1	17.5	17.6	17.2	17.5
${ }^{\text {a }}$ Omitted because less than 50 percent of the men in the age group x to $x+4$ had had intercourse by age x										

Women appear to start sexual activity slightly earlier than men, but the differences are small (see Figure 10.3). Eighty-three percent of women aged $20-49$ years had sexual intercourse by 20 years of age (see Table 5.6) compared to 79 percent of men by the same age. The median age at first sexual intercourse was similar for both men and women.

Figure 10.3 Percentage of Men and of Women Who Have Ever Had Sexual Intercourse by Exact Age

Recent Sexual Activity

In the absence of contraception, the probability of pregnancy is related to the frequency of intercourse. Thus, information on sexual activity can be used to refine measures of exposure to pregnancy. Table 10.23 presents data on sexual activity by background characteristics among men who have ever had intercourse. Men were considered to be sexually active if they had intercourse at least once in the four weeks prior to the survey.

Among men who ever had sexual intercourse, 78 percent were sexually active in the month prior to the survey. Sexual activity appeared to vary little by age. Never married men were less likely to be sexually active in the month preceding the survey than ever married men. Sexual activity was relatively low in Dar es Salaam and among men with secondary education and above. As expected, men using contraceptive methods are more likely to be sexually active than those who do not. Data on the number of sexual partners are presented in Chapter 11.

Recent sexual activity was noted to be slightly higher among men than women. About 78 percent of men reported being sexually active in the last four weeks, compared to 61 percent of women (see Table 5.8) for the same period.

Table 10.23 Recent sexual activity

Percent of men who have ever had intercourse by sexual activity in the four weeks prior to the survey according to background characteristics, Tanzania 1991/92

Background characteristic	Active last 4 weeks	Number
Age		
15-19	76.3	301
20-24	77.3	289
25-29	72.9	256
30-34	78.4	255
35-39	78.2	199
40-44	86.5	159
45-49	79.4	153
50-54	68.8	125
55+	81.6	147
Duration of marrlage		
<4	83.1	271
5-9	78.8	207
10-14	80.5	196
15-19	82.9	136
20-24	82.3	178
$25+$	79.6	289
Don't know/Not shown	71.0	19
Never in union	69.9	589
Resldence		
Mainland	77.8	1847
Dar es Salaam	59.1	144
Other urban	80.3	366
Rural	79.1	1337
Zanzibar	63.5	36
Region		
Dodoma	86.0	150
Arusha	60.8	116
Kilimanjaro	68.2	114
Tanga	85.6	85
Morogoro	87.9	110
Coast	79.9	33
Lindi	81.9	44
Mtwara	93.5	106
Ruvuma	84.9	68
Iringa	57.9	99
Mbeya	55.4	89
Singida	79.4	58
Tabora	83.4	63
Rukwa	81.9	45
Kigoma	75.0	61
Shinyanga	90.0	161
Kagera	73.4	100
Mwanza	85.8	124
Mara	94.4	76
Education		
No education	80.0	381
Primary incomplete	81.2	527
Primary completed	79.4	798
Secondary/Higher	52.8	178
Contraceptlve method		
No method	76.1	1569
Sterilisation	(66.6)	22
Periodic abstinence	80.3	96
Other	85.3	144
Total	77.5	1884

Note: Figures in parentheses are based on 25-49 men

10.4 Fertility Preferences

In the TDHS, currently married men were asked about their desire for children. They were also asked about the ideal number of children they wanted by gender, and how long they would like to wait before the birth of the next child.

Desire for More Children

In Tanzania where contraceptive prevalence rate is low and cultural influences are still strong, one would expect that many currently married men would have desired more children. As Tables 10.24 and 10.25 and Figure 10.4 show, 41 percent of currently married men indicated they wanted another child soon, 35 percent wanted another child Iater, and 3 percent were undecided when to have another child. Fifteen percent said that they wanted no more children and 2 percent were sterilized. The proportion who want no more children increases with age and the number of living children.

Table 10.24 Fertility preference by number of living children
Percent distribution of currently married men by desire for more children, according to number of living children, Tanzania 1991/92

Desire for children	Number of living children ${ }^{1}$							Total
	0	1	2	3	4	5	$6+$	
Want another soon ${ }^{2}$	77.0	40.9	42.0	42.4	32.4	28.9	21.4	40.5
Want another later ${ }^{3}$	9.9	45.9	28.0	41.0	41.6	18.0	32.1	34.9
Want another, undecided when	12.1	1.8	3.3	2.8	0.0	4.1	1.5	3.0
Undecided	0.0	0.6	0.8	0.6	6.3	0.6	2.1	1.4
Want no more	0.0	6.5	22.5	8.1	13.8	31.3	31.8	14.5
Wife sterilised	0.0	1.7	1.1	0.2	3.0	1.2	7.2	1.9
Wife declared infecund	0.0	1.5	0.4	2.8	1.2	2.0	1.6	1.3
Other answer	0.0	0.8	1.1	2.1	1.7	2.5	0.6	1.2
Missing	1.0	0.3	0.9	0.0	0.0	11.3	1.6	1.2
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of men	96	338	242	178	127	77	125	1184

[^11]Table 10.25 Fertility preferences by age
Percent distribution of currently married men by desire for more children, according to age, Tanzania 1991/92

Desire for children	Current age								Total
	20-24	25-29	30-34	35-39	40-44	45-49	50-54	$55+$	
Have another soon ${ }^{1}$	51.0	40.7	47.6	39.6	44.7	36.9	33.9	25.8	40.5
Have another later ${ }^{2}$	37.6	52.2	41.2	46.8	32.6	21.1	10.9	24.4	34.9
Another, undecided when	1.6	1.8	6.9	0.6	3.5	2.3	5.0	1.3	3.0
Undecided	0.0	0.0	0.5	0.6	0.0	7.8	2.3	0.9	1.4
Want no more	8.7	4.4	3.4	9.4	14.8	21.1	39.1	28.8	14.5
Wife sterilised	0.0	0.0	0.0	1.3	2.3	4.9	7.4	0.9	1.9
Wife declared infecund	0.0	0.0	0.0	0.0	0.5	3.9	1.5	5.8	1.3
Other answer	0.0	0.0	0.5	1.1	1.6	1.4	0.0	3.9	1.2
Missing	1.0	1.0	0.0	0.5	0.0	0.7	0.0	8.1	1.2
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	100	169	205	176	144	137	111	114	1184

Note: The 15-19 age group was omitted because less than 50 percent were married.
${ }^{1}$ Want next birth within 2 years
${ }^{2}$ Want to delay next birth for 2 or more years

Figure 10.4
Fertility Preferences among Currently Married Men 15-60

Figure 10.5 presents the percent of currently married men who want no more children by the number of living children, rural/urban residence, and educational attainment. The proportion of men who want no more children in rural areas is not significantly different from that in the urban areas. However, the proportion of men with secondary or higher education who want no more children is about twice that of men with primary or no education.

Figure 10.5 Percent of Currently Married Men Who Want No More Children

Ideal and Actual Number of Children

Though men do not bear children, they have a very strong influence and, in many cases, the final say, on the number of children they would like to have. Table 10.26 shows the percent distribution of all men by ideal number of children and mean ideal number of children for all men and currently married men, according to number of living children. About 11 percent of the men gave a non-numeric response. Twenty-eight percent of men with no child want four children and 30 percent of them want at least six children. Among men with one child, 19 percent wanted four children and 48 percent wanted six or more children. Among men with 6 or more living children, 14 percent of them would have wanted to have four children and 58 percent were satisfied with the number of children they have, that is six or more children. Overall, irrespective of the number of children still alive, 22 percent of all men wanted four children and 43 percent of them wanted six or more children.

As observed in Chapter 6, there is a correlation between the actual and ideal family size. The mean ideal number of children increases from 5.4 among childless men, to 6.7 among men with two living children, and to 8.9 among men with six or more children. Figure 10.6 shows the mean ideal number of children for all men by age and selected background characteristics. Overall, men with secondary or higher education had the smallest mean ideal number of children, and men with no education had the largest ideal family size (9 children). The mean ideal number of children varies among men of different ages. For example, the youngest men would like to have 5 children, men in the age 20-24 age group would like 6 children, men age 35-39 would like 7 children, and men age 45-49 years would like 9 children.

Table 10.26 Ideal number of children
Percent distribution of all men by ideal number of children and mean ideal number of children for all men and for currently married men, according to number of living children, Tanzania 1991/92

Ideal number of children	Number of living children ${ }^{1}$							Total
	0	1	2	3	4	5	$6+$	
0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0
1	0.4	0.1	0.0	0.0	0.0	3.1	0.0	0.3
2	3.4	2.0	2.4	0.6	1.3	1.9	2.6	2.5
3	9.9	4.9	3.8	1.5	0.4	3.4	8.8	6.5
4	28.2	19.2	20.2	18.1	9.3	12.8	13.6	21.9
5	18.8	14.9	15.2	18.0	7.1	3.1	4.8	15.3
$6+$	30.4	48.0	48.1	50.4	68.1	60.6	57.6	43.0
Non-numeric response	9.0	10.5	10.4	11.6	13.7	15.1	12.6	10.5
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number of men	912	380	274	195	137	83	132	2114
Mean ideal number	5.4	7.0	6.7	7.5	8.4	8.3	8.9	6.5
Number of men	830	340	246	173	118	71	115	1893
Mean for men in union	5.6	7.2	6.7	7.6	8.5	8.4	8.8	7.4
Number of men in union	85	307	217	157	109	66	109	1049

Note: The means exclude men who gave non-numeric responses.
${ }^{1}$ Includes current pregnancy

Figure 10.6
Mean Ideal Number of Children among All Men

10.5 Couples

Background Characteristics

Table 10.27 presents the percent distribution of husbands by age, number of children, type of union, level of education, urban/rural residence, and region (each couple is counted once). Relatively few husbands (9 percent) are under 25 years of age and only 23 percent of them are under 30 years of age. One in five of the unions considered here are polygynous. It is noted that about 6 percent of couples had different opinions on their marital status; the husbands mostly reported polygynous status, and the wives reported that their husband had only one wife.

Table 10.28 shows that men tend to marry younger women. In 94 percent of the couples observed, husbands were older than wives. In about one-third of couples, husbands were 10 years or more older than their wives.

Knowledge and Use of Contraception

There is a general feeling that matters relating to family planning are focused too often on women despite the fact that husbands are equal partners in the reproductive process and have a greater responsibility for family decisions. Moreover, women often look at their husbands as a constraint on the use of contraception.

Table 10.29 shows the percentage distribution of contraceptive knowledge among married couples by specific method. In about 68 percent of the couples both husband and wife know a modem method of family planning, in 17 percent of the couples only men were aware of any modern method, and in 9 percent of the couples only the wives knew about a modern method of family planning. The proportion of couples in which both the husband and wife had no knowledge of modern contraception was small (7 percent). For most methods, if only one spouse knew the method, it was most likely to be the husband, except in the case of injections and "other" methods.

Table 10.27 Background characteristics of husbands
Percent distribution of husbands by selected background characteristics, Tanzania 1991/92

		Number of men	
Background characteristic	Weighted percent	WeightedUn- weighted	

Age

Age			
$15-19$	0.7	6	10
20.24	8.2	78	87
$25-29$	14.5	139	143
$30-34$	19.1	182	164
$35-39$	16.7	159	148
40.44	13.4	128	132
$45-49$	11.3	108	115
50.54	9.4	90	72
$55+$	6.8	65	72

Number of chlldren			
<2	35.3	337	330
$3-4$	26.0	248	220
$5+$	38.7	370	393

Type of unlon

Monogamous	80.5	768	750
Polygamous	19.5	187	193
Education	24.0	229	229
\quad No education	68.5	654	649
Primary	7.5	72	65
Secondary/Higher			
Residence	97.9	935	903
\quad Mainland	4.8	46	40
\quad Dar es Salaam	75.3	165	102
\quad Other urban	2.8	723	761
Rural		20	40

Region

Dodoma	8.8	84	40
Dodoma	3.6	34	25
Arusha	3.7	36	31
Kilimanjaro	5.5	53	42
Tanga	5.9	56	54
Morogoro	0.9	9	25
Coast	1.6	15	21
Lindi	4.8	46	40
Mtwara	2.0	19	27
Ruvuma	6.9	66	51
Iringa	5.7	54	35
Mbeya	3.2	30	40
Singida	3.8	36	51
Tabora	3.0	29	62
Rukwa	5.0	48	67
Kigoma	8.4	80	63
Shinyanga	7.2	69	45
Kagera	5.0	76	71
Mwanza	49	73	
Mara	100.0	955	943
All men			

Table 10.28 Age difference between spouses
Percent distribution of the age difference between spouses according to wife's age

Age	Husband's age - wife's age (in years)					Total	First wives	Second+ wives	Total	Number
	Negative	0-4	5-9	10-14	15+					
15-19	0.5	24.2	38.9	19.0	17.4	100.0	8.9	12.7	9.5	103
20-24	3.4	24.3	38.4	19.2	14.8	100.0	7.9	13.2	8.5	213
25-29	4.3	26.2	42.4	14.7	12.5	100.0	6.9	12.4	7.5	191
30-34	7.3	26.9	25.1	21.7	19.0	100.0	7.8	12.0	8.4	143
35-39	6.1	25.8	31.7	21.8	14.6	100.0	6.9	15.7	7.9	149
40-44	12.3	21.0	28.4	29.0	9.2	100.0	6.5	9.2	6.7	90
45-49	10.5	34.7	31.9	21.5	1.5	100.0	4.6	7.4	5.0	66
Total	5.6	25.7	34.8	20.1	13.8	100.0	7.3	12.3	7.9	955

Table 10.29 Knowledge of methods among married couples
Percent distribution of contraceptive knowledge among married couples by specific method, Tanzania 1991/92

	Both know method	Husband, not wife	Wife, not husband	Neither	Total
Method					
	70.4	15.8	8.0	5.8	100.0
Any method	67.7	16.8	8.8	6.8	100.0
Any modem method	59.2	16.7	13.3	10.8	100.0
Pill	16.4	17.8	17.5	48.3	100.0
IUD	21.3	17.3	21.6	39.8	100.0
Injection	10.1	27.3	12.3	50.3	100.0
Diaphragm/Foam/Jelly	46.6	24.7	9.6	19.1	100.0
Condom	38.3	24.1	16.4	21.1	100.0
Female sterilisation	5.1	24.4	4.4	66.1	100.0
Male sterilisation	34.5	25.8	13.7	26.0	100.0
Any traditional method	16.0	29.1	9.1	45.8	100.0
Periodic abstinence	4.5	18.5	6.0	71.0	100.0
Mucus method	19.4	26.9	8.4	45.3	100.0
Wiuhdrawal	4.1	12.6	18.5	64.8	100.0
Other					

Approval of Family Planning

Husbands and wives were asked about their own approval of family planning. Husbands were also asked to state whether they thought their wives approved or disapproved family planning. Figure 10.7 shows the percentage distribution of couples by approval of family planning. Overall, in 59 percent of the couples both husband and wife approved of family planning, and in 9 percent of the couples both disapproved. In 19 percent of the couples, the wives approved but the husbands did not, and in 10 percent of the couples the husbands approved family planning but the wives did not.

Figure 10.7

Spouses Responses on Approval of Family Planning

TDHS 1991/92

Table 10.30 shows the perceptions of their wives' attitude towards family planning among husbands who approve of family planning according to background characteristics. Overall, 81 percent of husbands think that their wives approve of family planning as well, 6 percent believe their wives disapprove, and 13 percent don't know what their wives think.

On the other hand, as Table 10.31 shows, both husbands and wives often have wrong ideas about their spouses' opinion on family planning. Actually, husbands are more favourable towards family planning than their wives thought. In 63 percent of the cases, the wife thought that their husband disapproves of family planning, whereas the husband actually approves it; in 16 percent of cases the husband disapproved whereas the wife thought he approved. A significant proportion of wives does not know the husband's opinion; most of these were husbands who approved family planning (60 percent of cases in which the wife did not know). A similar picture emerges when validating the men's responses about the wives' opinions. For instance, in 65 percent of couples

Table 10.30 Attitudes of couples toward fanily planning
Among currently married non-sterilised men who know a contraceptive method, the percentage who approve of family planning, by their perception of their wife's attitude and selected background characteristics, Tanzania 199 1/92

		Respondent approves		
Background characteristic	Both approve	Wife disapproves	Unsure of wife	Number
Age				
<30	82.2	5.3	12.5	152
$30-39$	83.0	4.4	12.6	254
$40-49$	81.1	4.2	14.7	154
$50+$	72.3	15.5	12.3	99
Residence				
\quad Mainland	81.2	6.1	12.7	648
\quad Dar es Salaam	87.8	4.8	7.4	42
Other urban	82.3	5.1	12.6	130
\quad Rural	80.3	6.4	13.3	476
\quad Zanzibar	(57.7)	(14.6)	(27.7)	12
Education				
\quad No education	60.8	13.7	25.6	116
Primary	83.3	5.3	11.5	478
\quad Secondary/Higher	97.8	0.0	2.2	66
Total	80.8	6.2	13.0	660

Note: Rates shown in parentheses are based on $25-49$ men.
in which the husband thought she disapproved, the wife approved of family planning. In general, this shows that there is considerable scope for improvement of communication between spouses.

Table 10.31 Spouse's perception of other spouse's approval of family planning
Percentage distribution of spouse's approval of family planning by other spouse's perception, Tanzania 1991/92

Perception	Husband			Total	Number
	Approves	Disapproves	Unsure		
Believe husband approves	81.2	16.0	2.9	100.0	389
Believe husband disapproves	62.9	34.5	2.7	100.0	206
Don't know	59.6	36.0	4.3	100.0	359
Total	69.1	27.5	3.4	100.0	955
	Wife				
Perception	Approves Disapproves		Unsure	Total	Number
Believe wife approves	87.0	12.7	0.3	100.0	589
Believe wife disapproves	64.6	35.4	0.0	100.0	144
Don't know	73.6	26.4	0.0	100.0	222
Total	80.5	19.3	0.2	100.0	955

10.6 Desire for More Children

Husbands were asked about their desire for more children. Table 10.32 shows the percentage distribution of couples by desire for more children according to the number of living children each partner has. Overall, in 64 percent of the couples both want more children, in 6 percent of the couples both want no more children, in 4 percent of the couples the wife is infecund and the husband wants more children, in 15

Table 10.32 Desire for more children among couples by number of living children
Percentage distribution of couples by desire for more children, according to number of living children, Tanzania 1991/92

Number of living children	Both want more	Husband wants more, wife infecund	Husband wants more, wife does not	Wife wants more, husband does not	Both want no more	Other	Total	Number of couples
Husband								
0	79.5	14.1	2.4	0.0	0.0	4.0	100.0	72
1-3	82.4	2.3	10.4	1.5	0.2	3.1	100.0	400
4-6	53.3	2.2	19.4	6.2	9.2	9.6	100.0	288
7-9	36.9	3.5	26.8	6.4	15.5	11.0	100.0	121
10+	35.5	5.4	20.6	4.9	19.1	14.4	100.0	74
Wife								
0	84.0	9.6	2.2	2.4	0.0	1.8	100.0	111
1-3	80.5	2.9	8.3	2.6	1.3	4.5	100.0	470
4-6	45.4	1.7	25.5	5.9	9.8	11.7	100.0	269
7+	16.6	4.8	35.6	4.3	26.8	11.9	100.0	105
Total	64.0	3.6	15.4	3.7	6.3	7.0	100.0	955

percent of the couples the husband wants more children but the wife does not want any more children, and in 4 percent of the couples the wife wants more children but the husband did not. Thirty-seven percent of husbands who had 7 or more living children wanted more children in comparison to only 17 percent of women with 7 or more living children.

Table 10.33 shows the percentage distribution of couples by the husband's ideal number of children according to the wife's ideal number of children. Overall, 23 percent of the couples wanted the same number of children and in 32 percent of the couples, the husband wanted more children than the wife. In about 37 percent of the couples the wife wanted more children than the husband. This shows that there is little agreement between husbands and wives on the ideal number of children a couple would like to have.

Table 10.33 Ideal number of children according to spouses
Percent distribution of couples by ideal number of children, according to selected background characteristics, Tanzania 1991/92

Background characteristic	Ideal number same for husband and wife	Husband wants more than wife	Wife wants more than husband	Nonnumeric response	Total	Number of couples
Age difference						
Negative	12.7	14.2	61.4	11.7	100.0	53
0-4	23.8	27.5	41.7	7.0	100.0	245
5-9	20.4	37.1	35.7	6.8	100.0	332
10-14	26.1	34.4	29.4	10.2	100.0	192
15+	24.9	29.3	33.4	12.4	100.0	131
Type of unlon						
Monogamous	24.3	31.1	37.8	6.8	100.0	726
Polygamous	18.6	36.8	33.4	11.2	100.0	161
Different ${ }^{1}$	14.1	26.2	38.1	21.6	100.0	67
Number of more children						
Same	25.6	29.9	37.2	7.3	100.0	497
Different	19.4	33.8	36.9	9.8	100.0	458
Education						
Boh none	20.0	34.0	29.2	16.8	100.0	160
Wife some, husband none	12.0	34.1	34.7	19.3	100.0	67
Husband some, wife none	20.1	27.9	42.5	9.5	100.0	228
Both some	26.0	32.5	37.5	4.0	100.0	500
Total	22.6	31.8	37.1	8.5	100.0	955

[^12]
CHAPTER 11

AIDS KNOWLEDGE AND SEXUAL PRACTICES

The first cases of AIDS were reported in Tanzania in 1983 and, to date, the total is 34,605 . This figure is believed to represent only 20 percent of the true number of AIDS cases that have occurred in the country. The National AIDS Control Programme (NACP) estimates that 800,000 healthy individuals are currently infected with HIV and projects that 2 million people will be infected by the year 2000 (NACP, 1992). It is obvious that HIV/AIDS is the major public health problem in Tanzania. In view of the importance of HIV/AIDS in Tanzania, this survey collected information to assess knowledge of HIV/AIDS transmission and prevention from 9,238 women and 2,114 men.

11.1 AIDS Awareness and Knowledge

Table 11.1 and Figure 11.1 show the distribution of AIDS awareness and knowledge of specific modes of AIDS transmission by background characteristics for females and males. It is encouraging to note that most respondents (93 percent of females and 98 percent of males) have heard about AIDS. AIDS awareness is high across all age groups, and in both urban and rural areas. Among both males and females, AIDS awareness is relatively low among respondents with no education (94 percent among men, 86 percent among women).

To obtain more information about AIDS knowledge, respondents were asked to mention how AIDS is transmitted. Knowledge of sexual transmission of AIDS is very high. About 83 percent of females and 90 percent of males mentioned sexual intercourse as a mode of AIDS transmission. Among both sexes, knowledge of other modes of transmission of AIDS, such as contaminated needles or blades, mother to child, and blood transfusion, is low. Overall, the proportion mentioning specific modes of transmission of AIDS increases with increasing level of education.

As observed in other studies (Kapiga et al., 1991; Gaisie et al., 1993) AIDS awareness is found to be very high in Tanzania. However, a majority of respondents know about sexual transmission of AIDS; knowledge of other modes of transmission is very low. The ongoing AIDS education campaign may need to focus more on these less known transmission modes.

Table 11.1 Knowledge of AIDS
Percentage of women and men who have ever heard of AIDS and percentage reporting various modes of transmission, by selected background characterisitcs, Tanzania 1991/92

Background characteristic	Ever heard of AIDS	Mode of AIDS transmission						Number of women
		Sexual intercourse	Needles, blades, skin punctures	Mother to child	Blood transfusion	Other	Don't know	
FEMALES								
Age								
15-19	93.6	77.9	32.4	6.5	11.3	1.3	14.4	2183
20-24	95.7	87.7	40.3	8.5	16.1	2.0	7.4	1882
25-29	94.7	87.5	38.9	8.9	15.7	1.0	6.9	1599
30-34	94.7	86.2	34.2	7.4	16.1	1.8	8.0	1165
35-39	91.2	81.0	30.5	8.2	13.1	1.1	9.3	1000
40-44	89.3	78.4	26.7	5.2	9.7	1.1	10.1	715
45-49	86.0	75.5	21.1	4.8	8.0	0.7	10.4	695
Residence								
Mainland	93.0	82.6	34.1	7.4	13.7	1.4	9.7	8978
Dar es Salaam	96.2	90.8	49.1	5.0	15.3	1.1	5.3	585
Other urban	99.0	93.4	51.3	10.6	22.3	2.3	5.2	1686
Rural	91.2	79.1	28.5	6.8	11.4	1.2	11.2	6707
Zanzibar	99.3	90.8	24.6	7.1	5.7	0.2	8.2	260
Education								
No education	86.1	71.0	15.7	2.9	7.0	1.1	14.5	3128
Primary incomplete	94.7	82.4	31.1	6.8	10.8	1.7	11.4	1825
Completed primary	97.5	90.8	45.7	10.5	17.4	1.5	6.0	3841
Secondary/Higher	99.5	98.3	70.2	14.9	35.7	0.9	0.6	444
Total	93.2	82.8	33.9	7.4	13.5	1.4	9.7	9238
MALES								
Age								
<20	96.1	81.0	28.0	12.0	11.1	0.7	14.8	498
20-24	99.4	95.8	45.8	16.7	21.9	1.7	3.3	307
25-29	99.2	93.6	50.0	19.7	18.3	0.4	5.2	262
30-34	99.1	95.2	48.5	18.8	17.0	1.8	3.9	256
35-39	97.5	94.6	37.8	20.2	18.6	0.6	2.9	201
40-44	97.8	94.6	35.9	16.0	16.7	0.0	3.2	159
45-49	97.0	85.5	38.2	10.9	14.3	2.0	10.1	155
50+	95.8	87.3	35.9	11.8	12.2	0.4	8.6	274
Age at marriage								
<30	97.8	88.3	38.5	15.3	16.0	0.9	9.2	1069
30-39	98.5	95.1	43.8	19.6	17.7	1.3	3.5	457
40-49	97.4	90.1	37.1	13.5	15.5	1.0	6.6	313
$50+$	95.8	87.3	35.8	11.8	12.2	0.4	8.5	275
Residence								
Mainland	97.7	90.1	39.3	15.8	16.0	1.0	7.3	2063
Dar es Salaam	99.4	99.1	71.6	62.5	61.8	0.0	0.3	151
Other urban	99.8	95.8	47.9	15.2	15.5	0.0	4.0	402
Rural	97.0	87.7	33.7	11.3	11.6	1.3	8.9	1510
Zanzibar	96.8	83.0	32.0	1.7	7.5	0.8	13.8	51
Education								
No education	93.9	80.2	11.1	6.9	6.4	0.3	13.7	418
Primary incomplete	97.3	88.2	29.7	9.7	9.2	1.5	8.6	625
Completed primary	99.3	94.1	50.7	19.0	19.5	1.1	4.9	878
Secondary/Higher	99.6	97.4	77.5	37.2	41.0	0.0	2.2	192
Total	97.7	89.9	39.1	15.5	15.8	1.0	7.5	2114

Figure 11.1
AIDS Awareness and Knowledge of Modes of Transmission

11.2 AIDS Misconceptions

To assess potential misconceptions about methods of transmission of AIDS, respondents were asked whether they thought they can contract AIDS through hand shaking, hugging, kissing, sharing clothes or eating utensils, stepping on urine or stool, and mosquito bites. The results are presented in Table 11.2 for women and men who knew about AIDS. It is encouraging to note that the majority of respondents did not believe that any of these activities are risk factors for AIDS transmission.

Misconceptions were highly prevalent for both sexes: 33 percent of females and 36 percent of males thought urine and stools could transmit the infection, 32 percent of females and 42 percent of males thought mosquito bites could, and 28 percent of women and 33 percent of men thought kissing could. Respondents in rural areas and males are more likely to cite these activities as potential modes of AIDS transmission, whereas males living in Dar es Salaam appeared to have more correct knowledge than others.

Sixty-two percent of women and 68 percent of men knew a healthy person can have AIDS. A significant proportion of men and women did not know whether a healthy person can have AIDS (21 and 17 percent respectively), while an additional 17 percent of women and 13 percent of men thought a healthy person cannot have AIDS.

Table 11.2 AIDS transmission

Percentage of women and men who report possibility of transmitting AIDS by various means according to place of residence, Tanzania 1991/92

Method of transmission	Mainland				Zanzibar	Total
	Total	Dar es Salaam	Other urban	Rural		
FEMALES						
Shaking hands	12.4	5.9	9.6	13.7	13.4	12.4
Hugging	20.1	12.1	16.1	22.0	14.9	20.0
Kissing	27.9	25.4	27.3	28.3	16.0	27.6
Wearing clothes	22.5	17.6	18.6	24.1	13.4	22.3
Sharing eating utensils	22.4	19.3	17.7	24.0	16.4	22.2
Step on urine/stool	33.4	31.2	32.5	33.8	28.5	33.2
Mosquito etc. bite	31.8	22.8	33.6	32.1	30.5	31.7
Can a healthy person have AIDS?						
Yes	61.6	78.6	71.9	57.2	58.2	61.5
No	16.5	10.7	14.2	17.7	35.4	17.1
Don't know	21.8	10.7	13.8	25.1	6.4	21.4
Can a mother transmilt to chlld?						
Yes	59.0	77.5	71.3	53.9	56.0	58.9
No	14.5	9.8	12.9	15.4	31.8	15.0
Don't know	17.6	5.2	8.3	21.3	8.5	17.3
Missing	0.1	0.0	0.2	0.1	0.0	0.1
Total	8350	563	1669	6119	259	8609
MALES						
Shaking hands	15.9	1.1	9.6	19.1	11.5	15.8
Hugging	24.7	2.5	18.6	28.7	15.7	24.5
Kissing	32.8	5.9	29.0	36.6	23.2	32.6
Wearing clothes	28.2	5.4	18.4	33.3	24.9	28.1
Sharing eating utensils	28.3	5.7	17.0	33.7	28.8	28.3
Step on urine/stool	36.4	6.6	25.9	42.4	37.0	36.4
Mosquito etc. bite	41.5	4.4	32.7	47.8	55.1	41.9
Can a healthy person have AIDS?						
Yes	67.4	91.4	70.6	64.0	80.0	67.7
No	15.0	7.6	18.0	15.0	4.5	14.8
Don't know	17.1	0.9	10.7	20.6	15.5	17.1
Missing	0.4	0.0	0.7	0.4	0.0	0.4
Can a mother transmit to child?						
Yes	77.0	98.6	73.1	75.9	77.3	77.0
No	7.3	1.4	14.2	6.0	4.9	7.2
Don't know	15.7	0.0	12.7	18.1	17.8	15.8
Total	2015	150	401	1464	50	2065

11.3 Sources of Information about AIDS

Respondents were asked to name the sources of information about AIDS during the month before the survey; the results are presented in Table 11.3 and Figure 11.2. Over half of females cited friends or relatives (62 percent) and radio (56 percent) as a source of information about AIDS, whereas the majority of males interviewed (81 percent) cited the radio. Respondents in Dar-es-Salaam are more likely to get AIDS information from radio and newspapers than respondents in other places. Overall, only 6 percent of females and 5 percent of males reported that they did not hear about AIDS during the month before the survey. These findings indicate that most people in Tanzania are exposed to AIDS information. However, the sources of

Table 11.3 Sources of AIDS information
Percentage of women who report hearing of AIDS from various sources in the month before the survey, by urban-rural residence, Tanzania 1991/92

Source of information	Maindand				Zanzibas	Total
	Total	Dar es Salaam	Other urban	Rural		
FEMALES						
Radio	55.3	95.9	71.8	47.1	79.8	56.1
TV	1.7	6.7	3.3	0.9	10.1	2.0
Newspaper	19.6	57.5	31.7	12.9	17.1	19.6
Health worker	38.6	46.5	44.1	36.3	12.5	37.8
Mosque/Church	8.3	7.9	10.3	7.8	0.9	8.1
Friend/Relative	61.7	63.4	53.3	63.8	66.4	61.8
School/Teacher	4.9	3.5	6.7	4.6	3.7	4.9
Slogan/Pamphlet/Poster	19.1	35.2	23.4	16.5	7.6	18.8
Committee meeting	11.5	10.4	12.2	11.4	12.0	11.5
CCM office	1.2	0.1	1.8	1.2	2.1	1.3
Other	1.0	0.5	1.7	0.8	0.2	0.9
None	6.3	0.0	4.2	7.5	0.0	6.1
Total	8350	563	1669	6119	259	8609
MALES						
Radio	81.0	100.0	91.6	76.1	80.2	80.9
TV	2.2	3.0	6.7	0.9	25.6	2.8
Newspaper	38.0	86.0	45.2	31.1	30.4	37.8
Health worker	25.2	5.0	34.2	24.8	13.3	24.9
Mosque/Church	8.4	0.4	11.9	8.2	0.0	8.2
Friend/Relative	44.7	8.8	39.6	49.8	59.3	45.1
School/Teacher	2.6	0.0	1.8	3.2	2.2	2.6
Slogan/Pamphlet/Poster	26.6	62.2	31.9	21.5	24.9	26.6
Committee meeting	16.7	1.6	20.3	17.3	0.0	16.3
CCM office	3.8	1.5	3.1	4.2	3.1	3.8
Other	1.8	0.0	4.1	1.4	0.0	1.8
None	5.3	0.0	1.6	6.8	0.0	5.2
Total	2015	150	401	1464	50	2065

information about AIDS tend to differ between men and women. Men are more likely than women to get information from radio, newspaper and slogan/pamphlet/poster; women were more likely than men to hear about AIDS from friends/relatives, and health workers. The differences in the source of information between men and women was also reported in another study conducted in Dar es Salaam and Bagamoyo (Kapiga, 1991). These findings indicate that radio and friends or relatives are the principal sources of AIDS information in Tanzania.

Figure 11.2
Sources of information about AIDS

11.4 Attitudes about AIDS

Table 11.4 shows the opinion of respondents about what they thought was the most important role of the government in the care of AIDS patients. Sixty-four percent of women and 59 percent of men said the government should provide medical treatment for AIDS complications, an additional 14 percent of women and 7 percent of men said the government should assist relatives to take care of AIDS patients, and 15 percent of women and 32 percent of men thought that the government should isolate or quarantine AIDS patients. Only 5 percent of women and less than 1 percent of men thought that the government should not be involved.

Respondents were then asked about the type of service they would prefer be given to their relative, if they had AIDS. A majority of respondents (60 percent of women and 53 percent of men) preferred AIDS patients to be cared for by their relatives or friends. Thirty-one percent of women and 40 percent of men wanted the govemment to provide care of AIDS patients.

Table 11.4 Government and personal action for AIDS patients
Percentage of women and men by perception of the most important action government could do for people with AIDS and by preferred caretaker for a relative with AIDS, according to place of residence, Tanzania 1991/92

Government action	Mainland				Zanzibar	Total
	Total	Dar es Salaam	Other urban	Rural		
FEMALES						
Assistance						
Provide medical training	64.2	45.2	64.0	66.0	70.8	64.4
Help relatives/Care	14.0	30.0	12.5	13.0	15.7	14.1
Isolation/Quarantine/Jail	15.4	12.0	16.8	15.3	11.8	15.3
Not be involved	4.6	11.2	3.4	4.3	1.5	4.5
Other	1.5	1.7	3.3	1.0	0.3	1.5
Missing	0.3	0.0	0.1	0.3	0.0	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0
Preferred care						
Relatives/Friends	60.7	75.3	67.9	57.4	48.2	60.3
Government	30.0	23.2	23.2	32.5	48.2	30.5
Religious organisation/Mission	- 0.4	0.2	0.3	0.5	0.0	0.4
Nobody/Abandon	6.1	1.0	5.1	6.8	2.5	6.0
Other	2.7	0.4	3.4	2.7	1.1	2.6
Missing	0.1	0.0	0.0	0.1	0.0	0.1
Total	100.0	100.0	100.0	100.0	100.0	100.0
Total	8350	563	1669	6119	259	8609

MALES

Assistance						
\quad Provide medical Irainng	58.8	63.9	52.6	59.9	48.5	58.5
Help Relatives/Care	7.0	8.5	6.1	7.1	2.3	6.9
Isolation/Quarantine/Jail	31.4	27.6	34.5	30.9	49.1	31.8
Not be involved	0.5	0.0	0.0	0.7	0.0	0.5
Other	2.0	0.0	6.4	1.1	0.0	2.0
Missing	0.3	0.0	0.4	0.3	0.0	0.3
Total	100.0	100.0	100.0	100.0	100.0	100.0
Preferred care						
\quad Relatives/Friends	53.1	66.7	66.9	47.9	27.9	52.5
Government	39.1	32.2	27.3	43.1	71.4	39.9
Religious organisation/Mission	0.6	1.1	0.0	0.7	0.7	0.6
Nobody/Abandon	2.4	0.0	0.9	3.0	0.0	2.3
Other	4.8	0.0	4.9	5.3	0.0	4.7
Total	100.0	100.0	100.0	100.0	100.0	100.0
Total						
	2015	150	401	1464	50	2065

11.5 Sexual Practices

Under the auspices of the NACP an intensive information, education and communication (IEC) campaign to raise general awareness of AIDS in Tanzania has been implemented. The findings of the TDHS and reporss from the NACP indicate that general awareness about AIDS is high. However, there are limited data in Tanzania to show the impact of increased awareness on sexual behavior among both men and women. Information about recent sexual practise can be used by the NACP to assess the current programme impact and plan for future intervention strategies.

To obtain information about recent sexual activity, 7978 women and 1884 men who have had sexual relations were asked the frequency of sexual intercourse in the four weeks preceding the survey (see Table 11.5). Thirty-nine percent of women and 22 percent of men had no intercourse in the last four weeks, but most has intercourse 1-3 times. Men were relatively more sexually active than women. The median coital frequency is 2.7 for men and 2.1 for women. Among both men and women, the frequency of intercourse is higher among married and uneducated than among unmarried and educated. Frequency of intercourse varies moderately with age of the respondents and urban/rural residence.

To obtain more general information about frequency of sexual activity, respondents were asked to report how many times they usually have intercourse during one month (see Table 11.6). The median coital frequency for both men and women was 5. The usual frequency reported here was much higher than the frequency reported in the four weeks preceding the survey. This may occur because frequency in the last four weeks is affected by postpartum abstinence, illness, and temporary separation. Sexual activity among women reaches a peak at 25-29 years, while men reported the highest frequency of sexual intercourse at 40-44 and 45-49 years.

Respondents were further asked the number of different sex partners they have had in the four weeks preceding the survey (see Table 11.7). No distinction was made between formal partner (polygynous union), casual partner, extra-marital partner, or whether money was given for sex (commercial sex). Compared to women, men were more likely to have more than one sex partner (29 percent of men versus 6 percent of women). Among both men and women, the number of sex partners was higher among the unmarried and those below 25 years of age. However, the proportion of unmarried respondents is higher among subjects below 25 years of age. As expected, men in polygynous unions reported more than one partner (almost twothirds of men had more than one partner). The reported number of sex partners does not vary significantly with education and urban/rural residence.

Information about condom use was obtained by asking respondents to report if they used a condom during the last four weeks (see Table 11.8). Only a small proportion (9 percent of men and 4 percent of women) responded positively. Men were more likely to report having used a condom than women. Among both men and women, condom use was relatively higher among the unmarried and those below 35 years of age. Condom use is lower among uneducated and residents of rural areas than among educated and urban residents.

Table 11.5 Frequency of intercourse in the four weeks preceding the survey

Percent distribution of women and men by frequency of intercourse in the last four weeks by selected background characteristics, Tanzania 1991/92

Background characterisic	Frequency of intercourse					Don't know/ Missing	Total percent	Number	Median
	0	$1-3$	4-7	8-13	14+				
FEMALES									
Marital status									
Unmarried	61.2	30.2	6.5	1.7	0.2	0.2	100.0	1939	0.8
Married - monogamous	30.9	30.6	21.6	12.6	4.1	0.1	100.0	4379	2.9
Married - polygamous	33.7	35.0	20.4	9.0	1.7	0.2	100.0	1659	2.4
Age									
15-19	42.0	34.3	14.1	6.5	2.8	0.2	100.0	1121	1.6
20-24	39.9	28.8	17.7	9.7	3.7	0.2	100.0	1724	2.2
25-29	38.6	29.6	18.6	9.8	3.3	0.2	100.0	1576	2.2
30-34	36.2	32.5	19.0	10.8	1.6	0.0	100.0	1151	2.3
35-39	36.7	30.1	18.6	12.3	2.3	0.0	100.0	997	2.5
40-44	35.3	35.8	18.9	8.2	1.9	0.0	100.0	714	2.3
45-49	42.8	33.3	16.9	5.2	1.4	0.4	100.0	695	1.7
Education									
No education	37.1	31.9	18.6	9.5	2.8	0.2	100.0	2991	2.4
Incomplete primary	36.4	34.1	19.6	8.2	1.7	0.0	100.0	1499	2.2
Complete primary	41.1	30.3	15.9	9.5	3.1	0.2	100.0	3209	1.9
Secondary/Higher	44.4	26.1	18.9	8.8	1.3	0.5	100.0	278	1.5
Resldence									
Mainland	39.2	31.9	17.3	8.9	2.6	0.1	100.0	7776	2.1
Dar es Salaam	30.2	37.5	20.8	9.2	1.9	0.4	100.0	500	2.5
Other urban	43.5	30.9	16.3	7.6	1.7	0.0	100.0	1451	1.6
Rural	38.9	31.6	17.3	9.2	2.9	0.1	100.0	5825	2.1
Zanzibar	26.1	15.4	32.7	22.4	2.8	0.6	100.0	202	4.8
Total	38.8	31.4	17.7	9.2	2.7	0.2	100.0	7978	2.1
MALES									
Marital status									
Unmarried	31.8	50.8	14.2	2.2	0.6	0.4	100.0	700	1.9
Married - monogamous	18.0	39.9	22.5	13.0	6.7	0.0	100.0	992	3.4
Married - polygamous	10.6	31.8	32.7	14.6	10.3	0.0	100.0	191	4.6
Age									
15-19	23.7	61.1	12.0	2.4	0.8	0.0	100.0	301	2.1
20-24	22.7	49.8	17.8	6.9	2.8	0.0	100.0	289	2.5
25-29	27.1	42.1	19.1	7.3	4.4	0.0	100.0	256	2.5
30-34	21.6	32.8	27.8	11.0	6.7	0.0	100.0	255	3.6
35-39	21.8	32.1	25.4	13.7	7.1	0.0	100.0	199	3.6
40-44	13.5	38.6	31.1	10.6	6.3	0.0	100.0	159	3.8
45-49	20.6	35.9	20.4	14.8	8.3	0.0	100.0	153	3.0
50+	23.3	41.8	16.9	11.6	5.4	0.9	100.0	272	2.7
Education									
No education	19.3	38.4	25.0	13.8	2.8	0.7	100.0	381	3.3
Incomplete primary	18.8	46.1	21.0	8.6	5.6	0.0	100.0	527	2.8
Complete primary	20.6	46.3	20.2	7.7	5.1	0.0	100.0	798	2.7
Secondary/Higher	47.2	30.6	9.9	7.0	5.3	0.0	100.0	178	1.2
Resldence									
Mainland	22.1	43.1	20.5	9.2	4.9	0.1	100.0	1847	2.8
Dar es Salaam	40.9	32.0	19.6	6.7	0.8	0.0	100.0	144	1.7
Other urban	19.7	40.3	18.2	12.6	9.2	0.0	100.0	366	3.0
Rural	20.7	45.1	21.2	8.6	4.1	0.2	100.0	1337	2.8
Zanzibar	36.5	43.8	16.7	2.9	0.0	0.0	100.0	36	2.0
Total	22.4	43.2	20.4	9.1	4.8	0.1	100.0	1884	2.7

Table 11.6 Usual frequency of intercourse

Percent dissribution of women and men by usual frequency of intercourse by selected background characteristics,
Tanzania 1991/92

Background characteristic	Frequency of intercourse					Don't know/ Missing	Total percent	Number	Median
	0	1-3	4-7	8-13	14+				
FEMALES									
Marital status									
Unmarried	13.5	49.5	24.7	9.7	2.1	0.4	100.0	1939	2.9
Married - monogamous	1.3	20.8	34.2	28.0	15.5	0.3	100.0	4379	6.5
Married - polygamous	1.6	25.0	38.0	25.7	9.3	0.3	100.0	1659	5.5
Age									
15-19	5.4	40.6	26.8	17.0	9.7	0.6	100.0	1121	4.3
20-24	3.9	27.1	31.2	23.2	14.3	0.4	100.0	1724	5.4
25-29	2.6	22.3	33.0	29.3	12.4	0.4	100.0	1576	6.2
30-34	3.2	26.7	31.9	27.6	10.3	0.2	100.0	1151	5.4
35-39	2.5	26.6	36.4	23.2	11.3	0.1	100.0	997	5.6
40-44	5.5	28.9	37.3	20.9	7.4	0.0	100.0	714	4.8
45-49	11.0	33.7	36.6	12.7	5.7	0.4	100.0	695	4.2
Education									
No education	3.8	25.8	35.5	23.6	10.9	0.4	100.0	2991	5.3
Primary incomplete	3.9	29.7	34.7	20.8	10.9	0.1	100.0	1499	4.9
Completed primary	4.6	30.5	29.0	23.9	11.6	0.4	100.0	3209	4.9
Secondary/Higher	8.5	31.8	35.0	19.5	4.9	0.2	100.0	278	4.5
Resldence									
Mainland	4.4	29.2	32.0	23.0	11.1	0.3	100.0	7776	4.9
Dar es Salaam	2.4	42.1	32.6	17.7	4.9	0.3	100.0	500	4.4
Other urban	4.2	35.3	33.8	19.8	6.7	0.1	100.0	1451	4.6
Rural	4.6	26.6	31.6	24.2	12.7	0.4	100.0	5825	5.3
Zanzibar	2.1	7.3	58.1	25.9	6.0	0.6	100.0	202	6.4
Total	4.3	28.6	32.7	23.1	10.9	0.3	100.0	7978	5.0

MALES

Marital status									
Unmarried	6.5	53.3	26.6	9.3	4.3	-	100.0	700	3.3
Married - monogamous	1.4	20.7	30.6	23.9	23.4	-	100.0	992	7.0
Married - polygamous	0.7	11.3	28.1	28.9	30.9	-	100.0	191	8.9
Age									
15-19	3.7	57.8	26.4	8.3	3.7	-	100.0	301	3.2
20-24	3.1	39.1	31.2	12.6	14.0	-	100.0	289	4.5
25-29	3.0	29.1	29.1	17.9	20.9	-	100.0	256	5.6
30-34	1.9	28.9	23.4	23.5	22.4	.	100.0	255	6.6
35-39	2.8	19.3	33.5	24.9	19.6	-	100.0	199	6.9
40-44	1.2	19.2	26.4	27.1	26.2	-	100.0	159	8.3
45-49	6.9	16.7	30.3	23.8	22.3	-	100.0	153	7.0
50+	3.9	26.0	31.3	22.5	16.3	-	100.0	272	5.0
Education									
No education	3.6	21.5	32.3	23.7	18.9	-	100.0	381	6.7
Primary incomplete	3.4	31.1	26.6	19.8	19.0	-	100.0	527	5.1
Completed primary	1.8	35.0	30.5	16.0	16.6	-	100.0	798	4.9
Secondary/Higher	8.0	42.1	20.9	19.7	9.3	-	100.0	178	4.0
Resldence									
Mainland	3.2	31.5	28.9	19.1	17.3	-	100.0	1847	5.2
Dar es Salaam	0.0	38.1	39.5	16.6	5.9	.	100.0	144	4.4
Other urban	3.3	32.5	26.6	18.7	18.9	.	100.0	366	5.7
Rural	3.5	30.5	28.4	19.5	18.1	-	100.0	1337	5.4
Zanzibar	6.8	51.4	25.1	11.1	5.5	-	100.0	36	3.6
Total	3.2	31.9	28.9	19.0	17.1	-	100.0	1884	5.1

Table 11.7 Number of sexual partners in the four weeks preceding the survey
Percent distribution of women and men by number of sexual partners in the four weeks preceding the survey, by selected background characteristics, Tanzania 1991/92

Background characteristic	Number of partners			Missing	Total percent	Number
	1	2	3+			
FEMALES						
Marital status						
Unmarried	79.6	13.8	5.2	1.4	100.0	747
Married - monogamous	97.0	2.1	0.4	0.5	100.0	3025
Married - polygamous	94.2	4.0	0.8	1.1	100.0	1097
Age						
15-19	89.6	6.7	2.7	1.1	100.0	648
20-24	93.4	4.1	1.6	0.8	100.0	1034
25-29	92.8	5.2	1.2	0.9	100.0	965
30-34	94.9	4.4	0.4	0.2	100.0	734
35-39	95.9	3.1	0.5	0.5	100.0	631
40-44	95.3	2.6	1.1	1.0	100.0	462
45-49	95.6	2.9	0.4	1.2	100.0	395
Education						
No education	94.0	4.4	0.8	0.8	100.0	1877
Primary incomplete	94.4	3.7	1.0	0.9	100.0	953
Completed primary	92.7	4.7	1.8	0.8	100.0	1885
Secondary/Higher	96.5	2.8	0.7	0.0	100.0	153
Residence						
Mainland	93.8	4.2	1.2	0.8	100.0	4721
Dar es Salaam	95.5	3.1	0.7	0.6	100.0	347
Other urban	91.8	4.8	2.7	0.8	100.0	820
Rural	94.2	4.1	0.9	0.8	100.0	3554
Zanzibar	88.6	9.0	2.0	0.4	100.0	148
Total	93.7	4.3	1.2	0.8	100.0	4869

MALES

Marital status						
\quad Unmarried	55.8	25.6	17.8	0.9	100.0	477
Married - monogamous	84.6	8.0	5.4	2.0	100.0	814
Married - polygamous	35.6	55.2	8.6	0.7	100.0	171
Age						
15-19	54.4	26.5	19.0	0.0	100.0	229
$20-24$	61.3	21.9	15.9	0.8	100.0	223
$25-29$	75.7	15.6	7.5	1.2	100.0	187
$30-34$	74.5	15.3	6.6	3.6	100.0	200
$35-39$	68.5	15.6	13.1	2.9	100.0	156
40-44	73.1	21.3	4.8	0.7	100.0	137
45-49	81.1	15.6	3.3	0.0	100.0	122
50+	75.6	19.1	2.8	2.5	100.0	209
Education						
No education	70.0	21.0	7.6	1.3	100.0	307
Primary incomplete	71.6	19.2	8.7	0.5	100.0	428
Completed primary	66.5	18.8	12.4	2.4	100.0	633
Secondary/Higher	77.7	16.9	4.5	0.9	100.0	94
Residence						
Mainland	69.2	19.4	9.9	1.5	100.0	1439
\quad Dar es Salaam	84.1	15.4	0.5	0.0	100.0	85
\quad Other urban	74.4	15.5	9.7	0.5	100.0	294
\quad Rural	66.6	20.8	10.7	1.9	100.0	1060
Zanzibar	84.3	10.8	4.9	0.0	100.0	23
Total	69.4	19.3	9.8	1.5	100.0	1462

Table 11.8 Condom use
Percent distribution of women and men by condom use, by selected background characteristics, Tanzania 1991/92

Background characteristic	Condom used		Missing	Total percent	Number
	Yes	No			
FEMALES					
Marital status					
Unmarried	7.9	90.2	1.9	100.0	747
Married - monogamous	2.8	96.1	1.0	100.0	3025
Married - polygamous	3.3	95.6	1.1	100.0	1097
Age					
15-19	3.8	95.0	1.2	100.0	648
20-24	7.1	91.8	1.0	100.0	1034
25-29	3.4	95.0	1.6	100.0	965
30-34	3.4	96.0	0.6	100.0	734
35.39	1.8	97.1	1.2	100.0	631
40-44	1.6	96.9	1.5	100.0	462
45-49	1.1	97.6	1.3	100.0	395
Education					
No education	1.4	97.3	1.3	100.0	1877
Primary incomplete	3.3	95.4	1.4	100.0	953
Completed primary	6.1	92.9	1.1	100.0	1885
Secondary/Higher	5.2	94.8	0.0	100.0	153
Residence					
Mainland	3.8	95.0	1.2	100.0	4721
Dar es Salaam	7.4	91.4	1.2	100.0	347
Other urban	7.6	91.8	0.6	100.0	820
Rural	2.5	96.1	1.3	100.0	3554
Zanzibar	1.0	98.6	0.4	100.0	148
Total	3.7	95.1	1.2	100.0	4869
MALES					
Marital status					
Unmarried	15.7	82.5	1.7	100.0	477
Married - monogamous	6.5	92.5	1.0	100.0	814
Married - polygamous	3.4	96.6	0.0	100.0	171
Age					
15-19	12.6	86.3	1.1	100.0	229
20-24	15.0	84.9	0.2	100.0	223
25-29	14.7	84.4	0.9	100.0	187
30-34	5.6	93.7	0.6	100.0	200
35-39	11.4	88.3	0.4	100.0	156
40-44	7.4	89.0	3.7	100.0	137
45-49	0.5	99.5	0.0	100.0	122
50+	2.1	95.4	2.4	100.0	209
Education					
No education	1.6	96.9	1.5	100.0	307
Primary incomplete	3.3	95.1	1.6	100.0	428
Completed primary	15.7	83.7	0.6	100.0	633
Secondary/Higher	16.2	82.2	1.6	100.0	94
Residence					
Mainland	9.3	89.5	1.1	100.0	1439
Dar es Salaam	12.1	80.9	7.0	100.0	85
Other urban	15.6	84.4	0.0	100.0	294
Rural	7.3	91.7	1.0	100.0	1060
Zanzibar	0.0	100.0	0.0	100.0	23
Total	9.2	89.7	1.1	100.0	1462

Men who knew about the condom ($\mathrm{N}=1369$) were asked questions to elicit more information about their knowledge and their attitude about its use (see Table 11.9). Several statements were read to them and they were required to say whether they agreed or disagreed with each. More than three-quarters of men agreed with the statement "Condom is used only for casual sex." Most men are aware that condoms reduce the risk of STDs. It is interesting to note that 75 percent of men reported that the condom reduces sexual pleasure and 84 percent said women don't like condoms. Only 31 percent agreed that it is embarrassing to get condoms. One-fourth of the respondents thought that condom use can cause AIDS.

As has been reported by the NACP, these findings indicate that, despite a high level of knowledge of AIDS, the quality of this knowledge needs substantial improvement and a substantial number of respondents were engaged in high-risk sexual behavior. Low reported condom use in this population indicates a big gap between knowledge and practice. These findings indicate that knowledge is necessary but not enough in itself to cause changes in sexual behavior.

Table 11.9 Men's perceptions about condoms
Percentage of men who agree with certain statements about condoms, Tanzania 1991/92

Statement	Percent who agree
Condoms are used primarily wihh casual partners Condoms reduce risk of STD	78.2
Most women don't like men to use condoms	84.6
Using condoms shows responsibility	83.5
Condoms are used primarily for family planning purposes Condoms are embarrassing to obtain	69.6
A condom can be used more than once	55.6
Condoms make sex less enjoyable	

CHAPTER 12

LOCAL AVAILABILITY OF FAMILY PLANNING AND HEALTH SERVICES

Use of family planning and health services is determined by supply as well as demand. The TDHS included the Tanzania Service Availability Questionnaire (reproduced in Appendix E) to assess the availability, or supply, of family planning and health services. The questionnaire was applied at the community level, that is, one questionnaire was filled for each selected enumeration area. Information was gathered from two sources: groups of knowledgeable informants in the community (assembled by the interviewer) and informants visited in facilities. The information collected in the enumeration area (EA) and in the facilities is assigned to each respondent (individual questionnaire) to obtain population-based estimates. The number of independent data points, however, remains the same as the number of enumeration areas for which the information was collected: 319 for Mainland Tanzania and 30 for Zanzibar. ${ }^{1}$ Due to the small number of actual data points, the service availability estimates are subject to larger sampling errors than are the estimates based on data from individual women in the main survey.

The results in this Chapter are presented for women, but it must be kept in mind that these were actually the results of 349 interviews at the cluster level. One interview was held per cluster and, therefore, all service availability data are the same for all women in the cluster. Intracluster variability is not taken into account.

12.1 Service Availability Questionnaire

The service availability questionnaire was designed to provide a picture of the service environment available to Tanzanian women. There are two types of mechanisms for providing services: outreach programmes and stationary facilities. The former deliver services directly to people in their communities, whereas the latter function as repositories of services, relying on people to come to them to obtain services.

Outreach services are provided by health workers, usually in the context of mobile clinics. The informants assembled for the cluster interview were asked whether their communities are served by such services, and if so, what was the nature of these services. For example, if a health worker visits the community, the informants were asked whether he or she provides family planning methods (and more specifically, the pill, condom, and foaming tablets), basic medications, ORS instruction, vitamins, and immunisations.

Many types of stationary facilities exist. Community informants were asked to identify the nearest facility of each of the following types: 1) a hospital (representing either the secondary or tertiary level); 2) a health centre (the most complex primary health care facility); 3) a health clinic (dispensary), maternity centre, or matemity home (facilities offering limited primary health care); 5) a family planning clinic; and 6) a pharmacy. Facilities said to be within six hours' walking distance from the community were eligible to be visited by interviewers. One facility of each type was visited if it met the eligibility requirement. A second facility of each type would be visited if the first one visited did not provide family planning methods.

When facilities were visited, detailed information regarding staff, equipment, services, fees, supplies, medications, vaccines, and contraceptives was collected. Attention was focussed on whether facilities had

[^13]basic supplies, whether they experienced shortages of supplies or medicines, and whether equipment was in working order. Interviewers also verified the existence of equipment and supplies.

Health facilities were only visited if the distance from the community to the facility was less than 30 km . In total 191 hospitals, 204 health centres, and 329 dispensaries were visited.

12.2 Availability of Family Planning Services

Outreach Programmes

Twenty percent of women live in communities served by a health worker who provides family planning services (Table 12.1). Health workers are available to provide family planning services to 69 percent of the women in Zanzibar and to 18 percent of the women in mainland Tanzania.

Table 12.1 Distance to nearest family planning services according to residence						
Percent distribution of women $15-49$ by distance to nearest family planning services, according to residence, Tanzania 1991/92						
Outreach services/ Distance to nearest FP services	Mainland	Dares Salaam	Ouher urban	Rural	Zanzibar	Total
Outreach services Healch worker	18.2	10.6	37.3	14.1	69.3	19.6
Kilometres						
<1	25.3	26.0	48.2	19.4	37.6	25.6
$1-4$	39.6	55.3	51.3	35.3	55.5	40.1
5-9	21.7	11.1	0.0	28.1	7.0	21.3
10-14	8.3	0.0	0.0	11.1	0.0	8.1
15-29	3.2	0.0	0.5	4.1	0.0	3.1
30+	1.4	0.0	0.0	1.9	0.0	1.4
Unknown distance	0.5	7.6	0.0	0.0	0.0	0.5
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number	8978	585	1686	6707	260	9238
Campaign	4.7	0.0	4.7	5.1	53.7	6.0
Clusters	319	29	57	233	30	349

Stationary Facilities

About one-fourth of women live within 1 km of a facility that provides family planning (see Table 12.1) and two-thirds live within 5 km . Uban women generally are closer to a source of family planning than rural women. For example, in rural areas of mainland Tanzania, 55 percent of women live within 5 km of a facility that provides family planning, and 17 percent has to travel more than 10 km . In urban areas outside of Dar es Salaam, all but a tiny fraction of women live within 5 km of a family planning source.

Information Campaigns

Informants in the cluster interview were asked whether there had been an information campaign in the community within the past year that included family planning messages promoting specific methods or the general benefits of contraception. Whether or not there had been a family planning campaign in the preceding year varied: 54 percent of women in Zanzibar live in communities that had a campaign in the previous year versus only 5 percent of women in mainland Tanzania.

Availability of Family Planning by Type of Facility

Tables 12.2 and 12.3 show the distributions of women by distance and one-way travel time to the nearest facility providing family planning. (The medians are for those reporting a distance.) Overall, the median distance to any facility providing family planning services is 3 km . Health centres and dispensaries with family planning services are closer than hospitals: the median distance for women $15-49$ is 15 km for health centres and 5 km for dispensaries compared to 21 km for hospitals. As expected, women living in Dar es Salaam, those living in other urban areas, and those in Zanzibar usually are closer to a source of family planning than women living in rural areas on the mainland.

Table 12.2 Distance to nearest facility providing family planning services according to type of facility and residence
Percent distribution of women $15-49$ by distance to nearest facility providing family planning services/supplies, according to type of facility and residence, Tanzania 1991/92

Distance to nearest facility	Type of facility					Residence				
	Hospital	Health centre	Dispensary	Pharmacy	$\begin{aligned} & \text { All } \\ & \text { types } \end{aligned}$	Mainland	Dar es Salaam	Other urban	Rural	Zanzibar
Kilometres										
<1	2.4	6.1	15.8	6.0	25.6	25.3	26.0	48.2	19.4	37.6
1-4	17.4	8.4	35.2	8.2	40.1	39.6	55.3	51.3	35.3	55.5
5-9	10.8	12.4	23.5	5.9	21.3	21.7	11.1	0.0	28.1	7.0
10-14	7.1	11.0	8.7	4.8	8.1	8.3	0.0	0.0	11.1	0.0
15-29	18.2	20.2	6.8	9.2	3.1	3.2	0.0	0.5	4.1	0.0
30+	41.4	19.6	4.7	32.6	1.4	1.4	0.0	0.0	1.9	0.0
Unknown distance	2.8	4.0	3.5	11.8	0.5	0.5	7.6	0.0	0.0	0.0
None known	0.0	18.5	1.8	21.6	0.0	0.0	0.0	0.0	0.0	0.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	9238	9238	9238	9238	9238	8978	585	1686	6707	260
Median	21.0	15.3	4.6	25.5	3.0	3.1	1.9	1.2	4.4	1.4
Clusters	349	349	349	349	349	319	29	57	233	30

Over half of Tanzanian women live within one hour's travel time to a source of family planning; one in three lives within 30 minutes of a family planning outlet. The closest facilities are dispensaries: 42 percent of women live within one hour of a dispensary providing family planning, only 22 percent live within an hour of a hospital, and 17 percent are within one hour of a health centre.

Table 12.3 Time to nearest facility providing family planning services according to type of facility and residence
Percent distribution of women $15-49$ by one-way travel time (in minutes) to nearest facility providing family planning services/supplies, according to facility and residence, Tanzania 1991/92

Time to nearest facility	Type of facility					Residence				
	Hospital	Health centre	Dispensary	Pharmacy	$\begin{aligned} & \text { All } \\ & \text { types } \end{aligned}$	Mainland	Dar es Salaam	Other urban	Rural	Zanzibar
Minutes										
<15	3.5	3.1	12.8	6.1	18.7	18.5	25.8	37.0	13.2	27.6
15-29	6.4	6.5	11.9	3.2	14.6	13.6	25.6	19.8	10.9	51.2
30-59	12.2	7.7	17.3	5.9	21.7	22.0	23.2	34.0	18.9	10.4
60-119	15.4	9.2	25.9	6.8	23.0	23.5	16.5	4.5	28.8	7.7
$120+$	19.0	30.3	22.0	12.8	18.8	19.3	0.0	3.9	24.9	0.0
Unknown time	3.1	5.2	3.9	12.4	1.8	1.8	8.8	0.9	1.3	3.1
Distance $>30 \mathrm{~km}$	40.4	19.6	4.4	31.2	1.4	1.4	0.0	0.0	1.9	0.0
None known	0.0	18.5	1.8	21.6	0.0	0.0	0.0	0.0	0.0	0.0
Total	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	9238	9238	9238	9238	9238	8978	585	1686	6707	260
Median	60.7	-	60.2	60.8	40.8	45.1	20.8	20.6	60.3	15.6
Clusters	349	349	349	349	349	319	29	57	233	30

In rural areas, the distances to health centre and dispensary are very close to the national median distances, although travel times in rural areas were slightly longer than elsewhere.

Clearly, dispensaries are potentially the most important supplier of contraceptive methods. Their role could even be larger than shown in Chapter 4 (Table 4.8), where dispensaries were reported as the source of supply by 24 percent of current users of contraceptives. Of course dispensaries are not capable of providing a full range of methods; sterilisations and IUD insertions probably are beyond their range of capabilities.

12.3 Availability of Maternal and Child Health Services

Antenatal Care

Table 12.4 indicates that almost all women live in communities where informants were able to identify a facility that provides antenatal care (92 percent). Half of women in Tanzania live within 5 km of a facility that offers antenatal services, whereas 45 percent of women in rural mainland are within 5 km .

Table 12.4 Distance to nearest antenatal care services according to residence
Percent distribution of women $15-49$ by distance to nearest antenatal care services, according to residence, Tanzunia 1991/92

Distance to nearest antenatal services	Mainland	Dar es Salaam	Other urban	Rural	Zanzibar	Total
Kilometres	14.2	0.0	15.3	15.1	38.4	14.8
<1	35.1	46.6	50.3	30.2	50.3	35.5
$1-4$	25.8	9.0	28.1	26.7	11.4	25.4
$5-9$	8.4	0.0	2.2	10.7	0.0	8.1
$10-14$	5.6	0.0	1.7	7.0	0.0	5.4
$15-29$	0.9	0.0	0.0	1.3	0.0	0.9
$30+$	2.3	31.6	0.0	0.3	0.0	2.2
Unknown distance	7.8	12.7	2.4	8.8	0.0	7.6
None known	100.0	100.0	100.0	100.0	100.0	100.0
Total	8978	585	1686	6707	260	9238
Number	319	29	57	233	30	349
Clusters						

Tables 12.5 and 12.6 show that hospitals were often named as the source of antenatal care. Twenty-eight percent of women in Tanzania had a hospital with antenatal services within 5 km and 41 percent within 10 km . Dispensaries with antenatal services are found within 10 km for two-thirds of women.

Delivery Care

According to Table 12.7, half of women live in communities where delivery care is available within 5 km , and three-quarters within 10 km . Hospitals, health centres, and dispensaries were mentioned as delivery care sources.

Distances and travel time to the nearest health facility by type of facility are shown in Tables 12.8 and 12.9 , respectively. Among rural women, 18 percent had a hospital with delivery care within one hour travel time, 19 percent had a health centre within one hour, and 32 percent a dispensary. It is important to note that more than half of rural women live in communities where the informants could not mention a hospital with delivery care.

Table 12.5 Distance to nearest facility providing antenatal care services according to type of facility

Percent distribution of all women $15-49$ by distance to nearest facility providing antenatal care services by type of facility, Tanzania 1991/92

Distance to nearest facility	Hospital	Health centre	Dispensary	All types
Kilometres				
<1	5.3	6.3	14.1	14.8
$1-4$	22.7	19.3	30.3	355
$5-9$	13.3	14.0	20.5	25.4
$10-14$	3.7	4.4	7.7	8.1
$15-29$	1.1	3.3	5.4	5.4
$30+$	1.8	0.3	0.3	0.9
Unknown distance	1.1	2.4	0.2	2.2
None known	51.0	50.0	21.5	7.6
Total	100.0	100.0	100.0	100.0
Number	9238	9238	9238	9238
Median	4.3	4.7	4.4	4.5
Clusters	349	349	349	349

Table 12.6 Time to nearest facility providing antenatal care services according to type of facility

Percent distribution of all women 15-49 by one-way travel time (in minutes) to nearest facility providing antenatal care services by type of facility, Tanzania 1991/92

Time to nearest facility	Hospital	Health centre	Dispensary	All types
Minutes	5.2	3.8	11.1	11.7
<15	6.9	5.9	9.5	11.0
$15-29$	11.3	11.0	16.1	19.5
$30-59$	17.0	14.5	23.3	28.0
$60-119$	5.6	11.3	17.6	18.0
$120+$	1.1	3.4	1.0	3.6
Unknown time	1.8	0.0	0.0	0.6
Distance >30 km	51.0	50.0	21.5	7.6
None known	100.0	100.0	100.0	100.0
\quad Total	9238	9238	9238	9238
Number	46.0	60.3	60.2	60.2
Median	349	349	349	349
Clusters				

Table 12.7 Distance to nearest delivery care services according to residence
Percent distribution of women 15-49 by distance (in km) to nearest delivery care services, according to residence, Tanzania 1991/92

Distance to nearest delivery care services	Mainland	Dar es Salaam	Other urban	Rural	Zanzibar	Total
Kilometres	14.3	0.0	10.7	16.5	38.4	15.0
Under 1	33.8	32.6	52.4	29.2	50.3	34.3
$1-4$	24.2	0.0	29.9	24.9	11.4	23.8
$5-9$	8.0	1.9	1.5	10.2	0.0	7.8
$10-14$	5.3	0.0	1.7	6.7	0.0	5.2
$15-29$	0.9	0.0	0.0	1.3	0.0	0.9
$30+$	1.2	12.5	0.8	0.3	0.0	1.2
Unknown distance	12.2	53.0	3.0	10.9	0.0	11.8
None known	100.0	100.0	100.0	100.0	100.0	100.0
Total	8978	585	1686	6707	260	9238
Number						
Clusters	319	29	57	233	30	349

Table 12.8 Distance to nearest facility providing delivery care services according to type of facility

Percent distribution of all women $15-49$ by distance (in km) to nearest facility providing delivery care service by type of facility, Tanzania 1991/92

Distance to nearest facility	Hospital	Health centre	Dispensary	All types
Kilometres	7.2	5.9	12.7	15.0
<1	22.2	18.4	24.0	34.3
$1-4$	12.4	12.3	18.5	23.8
$5-9$	3.4	4.4	7.7	7.8
10.14	1.5	3.7	4.8	5.2
$15-29$	0.3	0.3	0.9	
$30+$	1.1	1.0	0.2	1.2
\quad Unknown distance	50.3	54.0	31.8	11.8
None known	100.0	100.0	100.0	100.0
	9238	9238	9238	9238
Total	4.1	4.7	4.6	4.4
Number	349	349	349	349
Median				
Clusters				

Table 12.9 Time to nearest facility providing delivery assistance according to type of facility

Percent distribution of women 15-49 by one-way travel time (in minutes) to nearest facility providing delivery assistance by type of facility, Tanzania 1991/92

Time to nearest facility	Hospital	Health centre	Dispensary	All types
Minutes				
<15	5.6	2.7	8.4	10.2
15-29	7.5	6.1	9.2	11.6
30-59	11.8	9.9	13.9	19.0
60-119	16.5	14.6	19.1	27.5
120+	5.3	11.4	16.7	17.3
Unknown time	1.1	1.3	1.0	2.0
Distance $>30 \mathrm{~km}$	1.8	0.0	0.0	0.6
None known	50.3	54.0	31.8	11.8
Total	100.0	100.0	100.0	100.0
Number	9238	9238	9238	9238
Median	45.4	60.5	60.2	60.1
Clusters	349	349	349	349

Immunisation

Data on the distance and travel time to immunisation services are presented in Tables 12.10 to 12.11, respectively. More than 90 percent of women live in communities where a source of immunisation was known. Mostly the source was within either 5 km (49 percent) or 10 km (74 percent). Forty-two percent had to travel less than one hour to reach a health facility with immunisation services.

Table 12.10 Distance to nearest immunisation services according to residence
Percent distribution of women 15-49 by distance to nearest immunisation services, according to residence, Tanzania 1991/92

Distance to nearest immunisation services	Mainland	Dares Salaam	Other urban	Rural	Zanzibar	Total
Kilometres						
<1	14.0	0.0	13.0	15.4	38.4	14.6
1-4	34.3	46.6	48.6	29.6	50.3	34.7
5-9	25.1	0.0	29.3	26.3	11.4	24.8
10-14	7.9	0.0	1.5	10.2	0.0	7.7
15-29	6.0	0.0	2.3	7.4	0.0	5.8
30+	1.4	0.0	0.0	1.8	0.0	1.3
Unknown distance	2.3	31.6	0.0	0.3	0.0	2.2
None known	9.0	21.7	5.3	8.9	0.0	8.8
Total	100.0	100.0	100.0	100.0	100.0	100.0
Number	8978	585	1686	6707	260	9238
Clusters	319	29	57	233	30	349

Table 12.11 Time to nearest

 immunisation servicesPercent distribution of all women 15-49 by one-way travel time (in minutes) to nearest facility providing immunisation services, Tanzania 1991/92

Time to nearest immunisation services	All types of facilities
Minutes	
<15	11.7
$15-29$	11.1
$30-59$	18.7
$60-119$	28.7
$120+$	17.0
Unknown time	3.0
Distance $>30 \mathrm{~km}$	1.0
None known	8.8
Total	100.0
Number	9238
Median	60.2
Clusters	349

REFERENCES

Bureau of Statistics [United Republic of Tanzania]. Undated. Tanzania Sensa 1988: Population census; Infant and child mortality regional and district estimates. Dar es Salaam: Planning Commission, President's Office.

Bureau of Statistics [United Republic of Tanzania]. 1967. Population Census 1967. Volume 6. Dar es Salaam: Bureau of Statistics.

Bureau of Statistics [United Republic of Tanzania]. 1978. Population Census 1978. Volume 8. Dar es Salaam: Bureau of Statistics.

Bureau of Statistics [United Republic of Tanzania]. 1988. Population Census 1988. National Profile. Dar es Salaam: Bureau of Statistics.

Gaisie, Sam, Anne R. Cross and Geoffrey Nsambukila. 1993. Zambia Demographic and Health Survey 1992: Final Report. Columbia, Maryland: University of Zambia and Central Statistical Office, Lusaka and Macro International Inc.

Kapiga, Saidi H., D.J. Hunter, and G. Nachtigal. 1993. Reproductive Knowledge, and Contraceptive Awareness and Practice Among Secondary School Pupils in Bagamoyo and Dar es Salaam, Tanzania (in press).

Kapiga, Saidi H., G. Nachtigal, and D.J. Hunter. 1991. Knowledge of AIDS among secondary school pupils in Bagamoyo and Dar-es-Salaam, Tanzania. AIDS 5:325-328.

Krasovec, Katherine and Mary-Ann Anderson. (editors). 1991.Maternal Nutrition and Pregnancy Outcomes: Anthropometric Assessment. Pan American Health Organization (PAHO) Scientific Publication No. 259, Washington DC: PAHO.

Martorell, Reynaldo and Jean-Pierre Habicht. 1986. Growth in Early Childhood in Developing Countries. In: Human Growth: A Comprehensive Treaty. ed. by Frank Falkner and J.M. Tanner, Vol. 3, 241-262. New York: Plenum Press.

Ministry of Health. 1989. Immunisation Coverage Survey, Tanzania. Report in collaboration with UNICEF and DANIDA. Dar es Salaam.

Ministry of Health. 1991. Immunisation Coverage Survey, Tanzania. Report in collaboration with UNICEF and DANIDA. Dar es Salaam.

Ministry of Health. 1992. Tanzania Family Planning Situation Analysis, draft report. In collaboration with the Africa OR/TA project, Population Council. Dar es Salaam/Nairobi.

Moreno, Lorenzo and Noreen Goldman. 1990. An assessment of survey data on birthweight. Social Science and Medicine 31: 491-500.

National AIDS Control Programme. 1992. HIV/AIDS/STD surveillance, Report No. 6, May. Dar es Salaam: Ministry of Health.

APPENDIX A

PERSONS INVOLVED IN THE TANZANIA DEMOGRAPHIC AND HEALTH SURVEY 1991/1992

APPENDIX A

PERSONS INVOLVED IN THE TANZANIA DEMOGRAPHIC AND HEALTH SURVEY 1991/1992

TDHS HEAD OFFICE STAFF

Project Director Mr. S.A.M. Ngallaba
Project Statisticians
Mrs. A. Komba
Mr. S.M. Aboud
Data Processing
Mr. J. Mwaisemba
Ms. J. Suka
Ms. K. Kaoma
Ms. N. Kajakelu
Ms. A. Maira
Mr. J.J. Rubona
Mr. I. Ruyobya
Mr. S. Ndaki
Mr. G. Millinga

DHS/MACRO STAFF

Anne R. Cross
Marilyn Wilkinson
Wamucii Njogu
David Cantor

Naomi Rutenberg
Elizabeth Britton
Alfredo Aliaga
Ties Boerma

FIELD STAFF

DODOMA/MOROGORO/SINGIDA
Supervisor
S. Aboud

Editor
Y. Sehaba

Interviewers
N. Almasi
M. Cidosa
A. Temu
V. Mtimba
E. Msambili
E. Kalyelye
A. Yona

KAGERA/KIGOMA/TABORA
Supervisor
E. Kwelukilwa

Editor
Caesar Mchunguzi
Interviewers
Josephine Mathias
D.M. Kajuna
S. Balige
G. Kisambale
M.K. Nsalamba
A.R. Mbago
M. Mutayoba

Supervisor

E. Maponde

Editor

P. Joseph

Interviewers
J. Mtunguja
J. Shaidi
L. Macha
L.Y. Temu
P. Muro
S. Massawe
D. Mashele

LINDI/MTWARA/RUVUMA
Supervisor
G. Millinga

Editor
E. Kadili

Interviewers
J. Matindiko
A. Ngaiwa
B. Ndumbaro
E. Hamisi
L. Mkolea
M. Mkwavila
A. Muhabuli

ZANZIBAR
Supervisor
H. Ally

Editor
H. Masoud

Interviewers
A.M. Bakari
A.M. Kombo
T.Z. Salum
H. Makame
R.A. Mohamed

Supervisor
I. Ruyobya

Editor
E. Mwinuka

Interviewers

E. Kibishi
H. Chizi
A. Mwanawima
R. Nditi
J.A. Tagalile
N. Achimpota
N. Kaoza

MARA/MWANZA/SHINYANGA
Supervisor
S. Ndaki

Editor
F. Matola

Interviewers
C. Kapongo
J. Chagula
F. Tegete
R. Mayala
S. Joliga
S. Mwaituka
S. Kazana

DAR ES SALAAM/COAST
Supervisor
J.J. Rubona

Editor
M. Mtutuma

Interviewers
J. Mpangala
N. Enock
J. Shishira
A. Nilla
S. Kakiziba
F. Tumai
J. Laurent

APPENDIX B

SURVEY DESIGN

APPENDIX B

SURVEY DESIGN

B. 1 Sample Design

The principal objective of the Tanzania Demographic and Health Survey (TDHS) was to collect data on fertility, family planning, and health of the people. This survey involved randomly selected women aged 15-49 and men aged 15-60 in selected households.

Before the sampling frame was developed, two possibilities for the TDHS sample design were considered:

- The 1988 Population census list of Enumeration Areas (EAs)
- The National Master Sample for Tanzania created in 1986 (NMS).

The NMS was intended mainly for agricultural purposes and, at that time, only for rural areas. The NMS was based on the 1978 Census information while the urban frame was still being worked upon. Therefore, it was decided that the TDHS sample design would use the 1988 Census information as the basic sampling frame. Since the TDHS sample was to be clustered, it was necessary to have sampling units of manageable and fairly uniform size and with very well defined boundaries. The 1988 Census frame provided the list of enumeration area units (EAs) that had well defined boundaries and manageable uniform size. Therefore, EAs were used as primary sampling units (PSUs).

The target of the TDHS sample was about 7850 women age $15-49$ with completed interviews. This sample should allow for separate analyses in urban and rural areas, and for estimation of contraceptive use in each of the 20 regions located on the mainland and in Zanzibar. Estimates for large domains (by combination of a group of regions) were also taken into consideration.

The TDHS used a three-stage sample. The frame was stratified by urban and rural areas. The primary sampling units in the TDHS survey were the wards/branches. The design involved the target of 350 completed interviews for each of 19 regions on the mainland and 500 in each of Dar es Salaam and Zanzibar.

In the first stage, the wards/branches were systematically selected with probability proportional to size (according to 1988 census information). In a second sampling stage, two EAs per selected rural ward/branch and one EA per selected urban ward/branch were chosen with probability proportional to size (also according to 1988 census information). In total, 357 EAs were selected for the TDHS, 95 in the urban area and 262 in the rural. A new listing of households was made shortly before the TDHS fieldwork by special teams including a total of 14 field workers. These teams visited the selected EAs all over the country to list the names of the heads of the households and obtain the population composition of each household (total number of persons in the household). In urban areas, the address of the dwelling was also recorded in order to make it easy to identify the household during the main survey. A fixed number of 30 households in each rural EA and 20 in each urban EA were selected.

About 9560 households were needed to achieve the required sample size, assuming 80 percent overall household completion rate.

The first-stage sampling was implemented with the following process

$$
P_{1}=\left(a_{h} M_{h i}\right) / M_{h}
$$

where
P_{1} is the first-stage selection probability a_{h} is the number of wards/branches selected in a particular region M_{hi} is the measure of size of the i -th selected ward/branch M_{h} is the measure of size for the region under consideration.

The second stage was the selection of EAs according to the following sampling probability

$$
P_{2}=\left(a_{h i} M_{h i j}\right) / M_{h i}
$$

where
P_{2} is the second-stage selection probability a_{hi} is the number of EAs selected in the i -th selected ward/branch $\mathrm{M}_{\mathrm{hij}}$ is the measure of size of the j -th selected EA
\mathbf{M}_{hi} is the measure of size for the ward/branch under consideration.

The final third stage was implemented according to the following relationship

$$
\mathrm{P}_{3}=\mathrm{b} / \mathrm{L}_{\mathrm{nij}}
$$

where
b is either 20 (urban) or 30 (rural)
$\mathrm{L}_{\mathrm{hij}}$ is the number of households listed in the j -th selected EA.
The overall sampling fraction was calculated as the product of the three probabilities of selection; the raw sample weights are just the inverse of this value. The raw sample weights were adjusted by differentials in the household response rate and the individual interview response rate. The final individual weights were calculated by normalizing them for each area so that the total number of weighted cases equals the total number of unweighted cases.

A male survey was also designed as a subsample of the selected households; one of every four was selected and every male between 15 and 60 years old was interviewed.

A total of 9238 women aged 15-49 years were successfully interviewed in the 1991 TDHS. The household response rate was about 97.2 on the mainland and 98.9 in Zanzibar. The individual response was 88.9 on the mainland and 79.4 in Zanzibar.

B. 2 Fieldwork and Data Processing

The Questionnaires

The household, female, and male questionnaires were designed by following the Model Questionnaire "B" which is for low contraceptive prevalence countries. Some adaptations were made to suit the Tanzania situation, but the core questions were not changed. The original questionnaire was prepared in English and later translated into Kiswahili, the language that is widely spoken in the country. There are parts in the
country where people are not very conversant with Kiswahili and would find it difficult to respond in Kiswahili but would understand when they are asked anything. The translated document was given to another translator to translate it back into English and comparisons were made to determine the differences. The final English versions of the questionnaires are given in Appendix E.

Pretest

A pretest to assess the viability of the survey instruments, particularly the questionnaires and the field organization, was carried out in lringa Rural District, lringa Region. It covered 16 enumeration areas with a total of 320 households. The pretest, which took a month to complete, was carried out in November/December, 1990, and covered both rural and urban EAs.

The pretest training took two weeks and consisted of classroom training and field practice in neighbourhood areas. In all, 14 newly recruited interviewers and the Census staff were involved. The Census staff who were to be transformed into the TDHS team handled the training for both the fieldwork management and the questionnaire. During the later fieldwork, they supervised the field exercise.

During the fieldwork, the administrative structure of the CCM Party, which involved the Party Branch Offices and the ten-cell leadership, were utilised in an effort to secure the maximum confidence and cooperation of the people in the areas where the team was working. At the end of the fieldwork, the interviewers and the supervisory team returned to the head office in Dar es Salaam for debriefing and discussion of their field experiences, particularly those related to the questionnaires and the logistic problems that were encountered. All these experiences were used to improve upon the final version of the questionnaires and the overall logistic arrangements.

Recruitment of Field Staff

One of the most difficult activities that must be done before the interviews begin is recruiting of the right type of personnel, i.e., those who would undertake such a difficult task. Given the nature of the work, the questions to be asked, and the type of respondents involved, interviewers who are selected have to be able to endure the difficult conditions in the field. Since most of the work relates to health and family planning issues, it was believed that persons who are working in the health sector would be the best people to do the job. In general, they are mature, responsible, and familiar with many of the questionnaire topics.

The Ministry of Health was consulted to secure the services of the female and male trained nurses. Two female nurses were required from each of the mainland regions and one male nurse in each of the selected regions (since only one male interviewer was needed for each team). For Zanzibar, six female nurses were requested from the Zanzibar Ministry of Health and the Office of the Govemment Statistician in Zanzibar was requested to provide supervisory and other staff to work on the survey in Zanzibar.

In all, 62 female interviewers and 16 male interviewers were recruited, and 7 Census and Planning Commission people were selected as supervisors, including some who took part in the pretest. After the four intensive weeks of training, 48 female and 8 male interviewers were selected for the fieldwork. Assessment tests and in-class mock interviews were used in selecting the best candidates.

Training of Field Staff

The training of the field staff was carried out in two classrooms at one location. The training took place at the National Bank of Commerce, Bankers' Training Institute, Iringa Municipality, Iringa Region. Two teams of two persons from the Census Office, with support of staff from DHS/Macro International and the Tanzania Food and Nutrition Centre, conducted the training. Trial interviews were done in the neighbourhood of the municipality.

The four weeks of training were devoted to classroom lectures, classroom mock interviews among the trainees, and interviews with invited volunteers from outside the classrooms with everyone listening. At the end of such interviews, trainees were invited to relate their observations as to how the entire interview was conducted and describe any mistakes that were made by the interviewer under the prevailing conditions. Later, the interviewers were taken out of the classroom to the field where each was assigned a household to interview. When all the interviewers were back in the classroom, each was asked to recount some of the experiences he encountered in the administration of the questionnaire, the behaviour of the respondent, and how he handled the situation.

During training, a series of assessment tests were given to the interviewers and supervisors. These tests were graded and the results were used in selecting interviewers. Those candidates who had a better grasp of the questionnaire and were able to detect errors in completed questionnaires were chosen to be field editors.

Two guests were invited to talk to the trainees on family planning and maternal and child health. A staff person from the Tanzania Family Planning Association (UMATI) talked about family planning methods and sources where they can be obtained. Another person who came from the Maternal and Child Health Department in the Regional Hospital of lringa discussed maternal and child health care and immunization.

Anthropometry was taught for a week and was conducted by a DHS consultant on anthropometry who was assisted by a specialist from the Tanzania Food and Nutrition Centre. Arrangements were made with the neighbouring villages for practice measuring of children below age 5 years and their mothers. All trainees received the anthropometric training.

Supervisors and editors received additional training on their specifie duties in the field. The main purpose was to ensure that all the teams would be following a uniform set of procedures.

The forty-eight female interviewers, 8 male interviewers, and 8 editors were selected from the larger pool of trainees at the end of the training course. Eight teams were made up and each team was allocated between two and three regions. Each field team was composed of six female interviewers, one male interviewer, one editor, a supervisor, and a driver (each team had one vehicle).

The main fieldwork began immediately after the training. Teams were dispatched to their respective regions with instructions to introduce themselves to the regional, district, ward, and village leaders before beginning the interviews. When a team got into the cluster (enumeration area), it had to identify itself to the local leaders before interviews would begin. This was necessitated by the fact that, in order to get the required maximum cooperation, the leaders had to be aware of the project and so inform the people about it. This is the usual practice in Tanzania whenever there is anything that involves the participation of the people, be it in urban or rural areas.

The fieldwork for the main survey was conducted in the period between October 1991 and March 1992. Thirty households were selected for interview in each cluster (EA). Women and men for the individual interview were identified during the household interview. Team supervisors located the housing units and assigned the selected households to the interviewers. Completed household and individual questionnaires were handed over to the field editors who checked to ensure that all relevant questions were recorded correctly, that the skip pattern instructions were followed properly, and that responses were internally consistent. The editing work was done before the team left the EA so that the interviewer could go back to the respondent to resolve any errors.

The supervisors were required to ensure that all the selected households and eligible women and men in an EA were interviewed, and that assignment sheets for the interviewers and supervisors were duly filled. The questionnaires and other control forms were submitted to the Head Office in Dar es Salaam for data entry.

Data Entry

The data processing staff for the survey work consisted of four clerks and one supervisor who were staff of the Bureau of Statistics. They were given initial data processing training by the DHS staff. Four microcomputers were installed in the Census Office and were used exclusively to process the TDHS data.

Before the questionnaires were passed for data entry, they had to undergo office editing to check for intemal consistency of responses recorded in the questionnaire and to see that the skip instructions had been followed, that there were no omissions, and that all entries were legible. Data entry began in November 1991 after the Census Office received questionnaires from the Dar es Salaam/Coast team and was completed during the last week of May 1992. When all the data had been entered, a final edit was done. This was completed in July 1992 and the preliminary report was published in September 1992.

Table B. 1 Results of the household and individual interviews by residence and zone
Results of the household and individual interviews by residence and zone, Tanzania 1991/92

Result	Residence					Zone						Total
	Mainland	Dar es Salaam	Other urban	Rural	$\begin{gathered} \text { Zanzi- } \\ \text { bar } \end{gathered}$	Coastal	Northem Highlands	Lake	Central	Southern Highlands	South	
Selected households												
Sampled	8686	583	1162	6941	596	2462	876	2570	816	1242	1316	9282
Found	8013	520	1057	6436	548	2266	800	2406	744	1139	1206	8561
Interviewed	7785	478	1005	6302	542	2199	733	2367	731	1126	1171	8327
Household response rate	97.2	91.9	95.1	97.9	98.9	97.0	91.6	98.4	98.3	98.9	97.1	97.3
Eligible women	9112	541	1227	7344	535	2375	848	3213	773	1233	1205	9647
Women interviewed	8718	505	1178	7035	520	2271	805	3089	750	1178	1145	9238
Eligible women response rate	95.7	93.3	96.0	95.8	97.2	95.6	94.9	96.1	97.0	95.5	95.0	95.8
Eligible men	2261	151	301	1809	131	574	224	779	192	328	295	2392
Men interviewed	2010	132	263	1615	104	504	199	695	171	272	273	2114
Eligible men response rate	88.9	87.4	87.4	89.3	79.4	87.8	88.8	89.2	89.1	82.9	92.5	88.4

Table B. 2 Sample implementation for women according to residence and zone
Percent distribution of households and eligible women in the DHS sample by results of the interview and household, eligible women and overall response rates, according to residence and zone, Tanzania 1991/92

Result	Residence					Zone						Total
	Mainland	Dar es Salaam	Other urban	Rural	$\begin{gathered} \text { Zanzj- } \\ \text { bar } \end{gathered}$	Coastal	Northern Highlands	Lake	Central	Southerm Highlands	South	
Selected households												
Completed (C)	89.6	82.0	86.5	90.8	90.9	89.3	83.7	92.1	89.6	90.7	89.0	89.7
Household present but no competent	17	4.6	23	13	03	18	7.4	0.8	1.1	0.2	0.4	1.6
Refused (R)	0.1	0.9	0.2	0.1	0.0	0.2	0.2	0.1	0.1	0.2	0.0	0.1
Dwelling not found (DNF)	0.8	1.7	2.0	0.5	0.7	0.7	0.0	0.6	0.4	0.6	2.3	0.8
Household absent (HA)	1.6	3.4	2.8	1.3	1.5	1.8	4.6	0.6	1.2	1.6	1.6	1.6
Dwelling vacant (DV)	4.8	6.2	5.6	4.5	5.7	5.2	3.9	4.2	5.1	6.1	4.8	4.8
Dwelling destroyed (DD)	1.1	0.3	0.4	1.3	0.8	0.6	0.2	1.5	2.1	0.2	2.0	1.1
Other (O)	0.2	0.9	0.3	0.1	0.0	0.3	0.0	0.1	0.4	0.3	0.0	0.2
Total percent	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	8686	583	1162	6941	596	2462	876	2570	816	1242	1316	9282
Household response rate (HRR) ${ }^{1}$	97.2	91.9	95.1	97.9	98.9	97.0	91.6	98.4	98.3	98.9	97.1	97.3
Eligible women												
Completed (EWC)	95.7	93.3	96.0	95.8	97.2	95.6	94.9	96.1	97.0	95.5	95.0	95.8
Not at home (EWNH)	3.2	4.4	2.9	3.1	2.1	3.0	4.2	3.0	1.8	3.6	3.2	3.1
Postponed (EWP)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0
Refused (EWR)	0.2	1.1	0.2	0.1	0.0	0.3	0.0	0.2	0.0	0.0	0.2	0.2
Partly completed (EWPC)	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.1
Incapacitated (EWI)	0.9	1.1	0.8	0.9	0.7	1.0	0.8	0.6	0.9	0.8	1.5	0.9
Total percent	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	9112	541	1227	7344	535	2375	848	3213	773	1233	1205	9647
Eligible woman response rate (EWRR) ${ }^{2}$	95.7	93.3	96.0	95.8	97.2	95.6	94.9	96.1	97.0	95.5	95.0	95.8
Overall response rate (ORR) ${ }^{3}$	93.0	85.8	91.3	93.8	96.1	92.8	87.0	94.6	95.3	94.4	92.3	93.1

Note: The household response rate (HRR) is calculated for completed households as a proportion of completed, no competent respondent, postponed, refused, and household absent. The eligible woman response rate (EWRR) is calculated for completed interviews as a proportion of completed, not at home, postponed, refused, partially completed and "other." The overall response rate is the product of the houschold and woman response rates.
${ }^{1}$ Using the number of households falling into specific response categories, the household response rate (HRR) is calculated as:

$$
\frac{C}{C+H P+P+R+H A+O}
$$

${ }^{2}$ Using the number of eligible women falling into specific response categories, the eligible woman response rate (EWRR) is calculated as:

EWC
$\mathrm{EWC}+\mathrm{EWNH}+\mathrm{EWP}+\mathrm{EWR}+\mathrm{EWPC}+\mathrm{EWO}+\mathrm{EWI}$
${ }^{3}$ The overall response rate (ORR) is calculated as:
ORR = HRR * EWRR

Table B. 3 Sample implementation for women according to region

Percent distribution of households and eligible women in the DHS sample by results of the interview and household, eligible women and overall response rates, according to region, Tanzania 1991/92

	Selected households								Eligible women												
Region	Completed (C)	Household presem but no competent respondent at home (HP)	Refused (R)	Dwelling not found (DNF)	Household absent (HA)	Household vacant (DV)	Dwelling destroyed (DD)	Other (O)	Total percent	Nurnber	Household response rate (HRR)	Com. pletod (EWC)	$\begin{aligned} & \text { Not } \\ & \text { at } \\ & \text { home } \\ & \text { (EWNC) } \end{aligned}$	Postponed (EWP)	Re fused (EWR)	Partly completed (EWPC)	Inca-pacitated (EWI)	Total percent	Number	Eligible woman response rate (EWRR)	Overall response rate (ORR)
Dodorna	91.2	1.9	0.3	0.3	0.5	4.5	1.1	0.3	100.0	375	97.4	97.7	1.7	0.0	0.0	0.0	0.6	100.0	349	97.7	95.2
Arusha	80.3	7.1	0.2	0.0	7.8	4.4	0.2	0.0	100.0	436	91.6	93.9	5.1	0.0	0.0	0.0	1.0	100.0	391	93.9	86.0
Kilimanjaro	87.0	7.7	0.2	0.0	1.4	3.4	0.2	0.0	100.0	440	91.6	95.8	3.5	0.0	0.0	0.0	0.7	100.0	457	95.8	87.8
Tanga	89.9	0.5	0.0	0.7	0.7	6.9	1.1	0.2	100.0	437	98.7	96.2	2.8	0.0	0.0	0.0	1.0	100.0	398	96.2	95.0
Morogoro	94.5	0.2	0.0	0.0	1.2	3.6	0.2	0.2	100.0	422	99.7	97.4	1.4	0.0	0.0	0.2	1.0	100.0	499	97.4	97.2
Coast	91.3	2.8	0.0	0.2	1.7	3.1	0.7	0.2	100.0	424	96.8	93.8	4.5	0.0	0.2	0.5	1.0	100.0	402	93.8	90.7
Dar es Salaam	82.0	4.6	0.9	1.7	3.4	6.2	0.3	0.9	100.0	583	91.9	93.3	4.4	0.0	1.1	0.0	1.1	100.0	541	93.3	85.8
Lindi	85.7	0.7	0.0	2.7	3.4	6.3	1.1	0.0	100.0	442	96.2	96.1	2.8	0.0	0.0	0.0	1.1	100.0	361	96.1	92.5
Mrwara	92.0	0.2	0.0	1.4	0.0	3.7	2.8	0.0	100.0	436	98.3	96.1	2.5	0.0	0.0	0.0	1.4	100.0	357	96.1	94.4
Ruvuma	89.3	0.2	0.0	2.7	1.4	4.3	2.1	0.0	100.0	438	96.8	93.4	4.1	0.0	0.6	0.0	1.8	100.0	487	93.4	90.4
Iringa	93.4	0.2	0.5	0.2	1.6	4.1	0.0	0.0	100.0	441	99.0	96.2	2.8	0.0	0.0	0.0	1.0	100.0	393	96.2	95.3
Mbeya	90.9	0.0	0.3	1.1	1.7	5.8	0.0	0.3	100.0	361	98.5	94.1	5.0	0.0	0.0	0.0	0.9	100.0	323	94.1	92.7
Singida	88.2	0.5	0.0	0.5	1.8	5.7	2.9	0.5	100.0	441	99.0	96.5	1.9	0.2	0.0	0.2	1.2	100.0	424	96.5	95.5
Tabora	89.7	1.4	0.0	2.3	0.7	5.0	0.9	0.0	100.0	439	96.1	96.5	2.6	0.0	0.0	0.0	0.9	100.0	429	96.5	92.7
Rukwa	87.7	0.2	0.0	0.7	1.6	8.4	0.7	0.7	100.0	440	99.0	95.9	3.5	0.0	0.0	0.0	0.6	100.0	517	95.9	95.0
Kgoma	92.0	1.6	0.0	0.5	1.1	2.7	1.8	0.2	100.0	439	97.8	97.3	2.4	0.0	0.2	0.0	0.2	100.0	510	97.3	95.1
Shinyanga	92.7	0.2	0.0	0.5	0.5	5.5	0.5	0.2	100.0	440	99.3	95.2	3.7	0.0	0.2	0.0	0.9	100.0	645	95.2	94.5
Kagera	90.3	1.6	0.5	0.5	0.5	5.5	1.0	0.0	100.0	382	97.2	94.8	3.7	0.0	1.0	0.0	0.5	100.0	405	94.8	92.1
Mwanza	90.8	0.2	0.0	0.0	0.7	4.6	3.4	0.2	100.0	436	99.7	97.4	2.1	0.0	0.0	0.0	0.5	100.0	606	97.4	97.1
Mera	96.8	0.0	0.0	0.0	0.2	1.8	1.2	0.0	100.0	434	100.0	95.6	3.6	0.2	0.0	0.2	0.5	100.0	618	95.6	95.6
Zanzibar	90.9	0.3	0.0	0.7	1.5	5.7	0.8	0.0	100.0	596	98.9	97.2	2.1	0.0	0.0	0.0	0.7	100.0	535	97.2	96.1
Total	89.7	1.6	0.1	0.8	1.6	4.8	1.1	0.2	100.0	9282	97.3	95.8	3.1	0.0	0.2	0.1	0.9	100.0	9647	95.8	93.1

Table B. 4 Sample implementation for men according to residence and zone
Percent distribution of households and eligible men in the DHS sample by results of the interview and household, eligible men and overall response rates, according to residence and zone, Tanzania 1991/92

Result	Residence					Zone						Total
	Mainland	Dar es Salaam	Other urban	Rural	$\begin{gathered} \text { Zanzi- } \\ \text { bar } \end{gathered}$	Coastal	Northem highlands	Lake	Central	Southem highlands	South	
Selected households												
Completed (C)	91.3	80.3	88.4	92.7	89.0	89.3	88.2	91.7	93.8	93.3	91.8	91.1
Household present but no competent												
respondent at home (HP)	1.3	5.6	1.4	0.9	0.6	2.0	5.5	0.6	0.0	0.0	0.0	1.2
Refused (R)	0.1	2.1	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.1
Dwelling not found (DNF)	0.6	0.7	1.8	0.4	1.3	0.5	0.0	0.5	0.5	0.3	1.9	0.6
Household absent (HA)	1.9	3.5	4.2	1.4	1.9	2.1	5.5	0.8	0.5	2.2	1.9	1.9
Dwelling vacant (DV)	3.5	6.3	3.9	3.2	7.1	5.0	0.9	4.2	2.6	4.1	2.5	3.7
Dwelling destroyed (DD)	1.3	0.7	0.0	1.5	0.0	0.5	0.0	2.2	2.1	0.0	1.9	1.2
Other (0)	0.1	0.7	0.4	0.0	0.0	0.2	0.0	0.0	0.5	0.0	0.0	0.1
Total percent	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	2137	142	284	1711	154	605	220	639	193	315	319	2291
Household response rate (HRR) ${ }^{1}$	97.9	90.5	96.5	98.7	97.9	96.8	94.2	98.8	99.5	99.7	98.0	97.9
Eligible men												
Completed (EMC)	88.9	87.4	87.4	89.3	79.4	87.8	88.8	89.2	89.1	82.9	92.5	88.4
Not at home (EMNH)	8.4	8.6	8.0	8.5	9.9	7.1	9.8	9.8	9.4	10.7	3.7	8.5
Postponed (EMP)	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0
Refused (EMR)	0.3	2.6	0.3	0.1	0.0	0.9	0.0	0.0	0.5	0.0	0.0	0.3
Partly completed (EMPC)	0.1	0.0	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.1
1 ncapacitated (EMI)	2.3	1.3	4.3	2.0	10.7	3.7	1.3	1.0	1.0	6.4	3.7	2.8
Total percent	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Number	2261	151	301	1809	131	574	224	779	192	328	295	2392
Eligible man response rate (EMRR) ${ }^{\mathbf{2}}$	88.9	87.4	87.4	89.3	79.4	87.8	88.8	89.2	89.1	82.9	92.5	88.4
Overall response rate (ORR) ${ }^{3}$	87.0	79.1	84.4	88.1	77.7	85.0	83.7	88.2	88.6	82.6	90.7	86.5

Note: The household response rate is calculated for completed households as a proportion of completed, no competent respondent, postponed, refused, and household absent. The eligible man response rate is calculated for completed interviews as a proportion of completed, not at home, postponed, refused, partially completed and "other." The overall response rate is the product of the household and man response rates.
${ }^{1}$ Using the number of households falling into specific response categories, the household response rate (HRR) is calculated as:

$$
\overline{\mathrm{C}+\mathrm{HP}+\mathrm{P}+\mathrm{R}+\mathrm{HA}+\mathrm{O}}
$$

${ }^{2}$ Using the number of eligible men falling into specific response categories, the eligible man response rate (EMRR) is calculated as:

$$
\frac{\mathrm{EMC}}{\mathrm{EMC}+\mathrm{EMNH}+\mathrm{EMP}+\mathrm{EMR}+\mathrm{EMPC}+\mathrm{EMO}+\mathrm{EMI}}
$$

${ }^{3}$ The overall response rate (ORR) is calculated as:

$$
\text { ORR }=\mathrm{HRR} * \mathrm{EMRR}
$$

Table B. 5 Sample implementation for men according to region

Percent distribution of households and eligible men in the DHS sample by result of the interview and household, eligible men and overall response rates, according to region, Tanzania 1991/92

	Selected households								Eligible men												
Region	Completed (C)	Household presem but no competent respond- eris at home (HP)	Refused (R)	Dwelling not found (DNF)	Household absent (HA)	Household vacant (DV)	Dwelling destroyed (DD)	Other (O)	Total percent	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	Household resporise rate (HRR)	Completod (EMC)	Not al home (EMNC)	Postponod (EMP)	Refused (EMR)	Parly completed (EMPC)	Inca- paci- tated (EMI)	Total percent	$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	Eligible man response rale (EMRR)	Overall response rate (ORR)
Dodoma	95.5	0.0	0.0	0.0	0.0	3.4	1.1	0.0	100.0	89	100.0	89.2	7.5	0.0	1.1	0.0	2.2	100.0	93	89.2	89.2
Arusha	84.3	6.5	0.0	0.0	8.3	0.9	0.0	0.0	100.0	108	92.9	86.1	13.0	0.0	0.0	0.0	0.9	100.0	108	86.1	80.0
Kilimanjaro	92.0	4.5	0.0	0.0	2.7	0.9	0.0	0.0	100.0	112	95.4	91.4	6.9	0.0	0.0	0.0	1.7	100.0	116	91.4	87.1
Tanga	94.1	0.0	0.0	0.0	1.0	3.9	1.0	0.0	100.0	102	100.0	85.1	11.5	0.0	0.0	0.0	3.4	100.0	87	85.1	85.1
Morogoro	94.2	0.0	0.0	0.0	1.9	3.8	0.0	0.0	100.0	104	100.0	97.3	0.9	0.9	0.9	0.0	0.0	100.0	110	97.3	97.3
Coast	92.2	2.9	0.0	0.0	1.9	1.9	1.0	0.0	100.0	103	96.9	91.6	4.2	0.0	0.0	2.1	2.1	100.0	95	91.6	88.8
Dar es Salaam	80.3	5.6	2.1	0.7	3.5	6.3	0.7	0.7	100.0	142	90.5	87.4	8.6	0.0	2.6	0.0	1.3	100.0	151	87.4	79.1
Lindi	89.4	0.0	0.0	1.0	3.8	4.8	1.0	0.0	100.0	104	98.9	89.3	6.0	0.0	0.0	0.0	4.8	100.0	84	89.3	88.3
Mtwara	95.4	0.0	0.0	0.9	0.0	0.9	2.8	0.0	100.0	108	99.0	94.2	1.9	0.0	0.0	0.0	3.9	100.0	103	94.2	93.3
Ruvuma	90.7	0.0	0.0	3.7	1.9	1.9	1.9	0.0	100.0	107	96.0	93.5	3.7	0.0	0.0	0.0	2.8	100.0	108	93.5	89.8
lringa	94.5	0.0	0.0	0.0	1.8	3.7	0.0	0.0	100.0	109	100.0	90.1	5.9	0.0	0.0	0.0	4.0	100.0	101	90.1	90.1
Mbeya	94.5	0.0	0.0	0.0	1.1	4.4	0.0	0.0	100.0	91	100.0	86.2	7.5	0.0	0.0	0.0	6.3	100.0	80	86.2	86.2
Singida	92.3	0.0	0.0	1.0	1.0	1.9	2.9	1.0	100.0	104	99.0	88.9	11.1	0.0	0.0	0.0	0.0	100.0	99	88.9	88.0
Tabora	92.5	0.9	0.0	2.8	1.9	1.9	0.0	0.0	100.0	106	96.1	90.6	9.4	0.0	0.0	0.0	0.0	100.0	117	90.6	87.0
Rukwa	91.3	0.0	0.0	0.9	3.5	4.3	0.0	0.0	100.0	115	99.1	76.2	15.6	0.0	0.0	0.0	8.2	100.0	147	76.2	75.5
Kgoma	92.5	2.8	0.0	0.0	0.9	0.9	2.8	0.0	100.0	106	97.0	90.0	9.2	0.0	0.0	0.0	0.8	100.0	120	90.0	87.3
Shinyanga	92.5	0.0	0.0	0.0	0.9	5.7	0.9	0.0	100.0	106	100.0	87.3	12.0	0.0	0.0	0.0	0.6	100.0	166	87.3	87.3
Kagera	88.2	0.0	0.0	0.0	0.0	8.6	3.2	0.0	100.0	93	100.0	81.4	17.5	0.0	0.0	0.0	1.0	100.0	97	81.4	81.4
Mwanza	89.3	0.0	0.0	0.0	0.0	5.4	5.4	0.0	100.0	112	100.0	93.4	5.1	0.0	0.0	0.0	1.5	100.0	137	93.4	93.4
Mara	94.8	0.0	0.0	0.0	0.9	3.4	0.9	0.0	100.0	116	100.0	90.8	7.0	0.0	0.0	0.0	2.1	100.0	142	90.8	90.8
Zanzibar	89.0	0.6	0.0	1.3	1.9	7.1	0.0	0.0	100.0	154	97.9	79.4	9.9	0.0	0.0	0.0	10.7	100.0	131	79.4	77.7
Total	91.1	1.2	0.1	0.6	1.9	3.7	1.2	0.1	100.0	2291	97.9	88.4	8.5	0.0	0.3	0.1	2.8	100.0	2392	88.4	86.5

APPENDIX C

ESTIMATES OF SAMPLING ERRORS

APPENDIX C

ESTIMATES OF SAMPLING ERRORS

The results from sample surveys are affected by two types of errors, nonsampling error and sampling error. Nonsampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, and data entry errors. Although efforts were made to minimize this type of error during the design and implementation of the TDHS, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the TDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results.

Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can be reasonably assured that, apart from nonsampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.

If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the TDHS sample design depended on stratification, stages, and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical Institute for the World Fertility Survey, was used to assist in computing the sampling errors with the proper statistical methodology.

The CLUSTERS program treats any percentage or average as a ratio estimate, $r=y / x$, where y represents the total sample value for variable y, and x represents the total number of cases in the group or subgroup under consideration. The variance of r is computed using the formula given below, with the standard error being the square root of the variance:

$$
\operatorname{var}(r)=\frac{1-f}{x^{2}} \sum_{h=1}^{H}\left[\frac{m_{h}}{m_{h}-1}\left(\sum_{i=1}^{m_{h}} z_{h_{h}}^{2}-\frac{z_{h}^{2}}{m_{h}}\right)\right]
$$

in which

$$
z_{k t}=y_{k d}-r \cdot x_{k t} \text {, and } z_{k}=y_{k}-r \cdot x_{k}
$$

where
$\boldsymbol{h} \quad$ represents the stratum which varies from 1 to H
$\boldsymbol{m}_{\boldsymbol{h}} \quad$ is the total number of EAs selected in the $\mathrm{h}^{\text {th }}$ stratum
$y_{n i} \quad$ is the sum of the values of variable y in EA in the $\mathrm{h}^{\text {th }}$ stratum
$x_{h i} \quad$ is the sum of the number of cases (women) in EA in the $\mathrm{h}^{\text {th }}$ stratum
$f \quad$ is the overall sampling fraction, which is so small that CLUSTERS ignores it.
In addition to the standard errors, CLUSTERS computes the design effect (DEFT) for each estimate, which is defined as the ratio between the standard enor using the given sample design and the standard error that would result if a simple random sample had been used. A DEFT value of 1.0 indicates that the sample design is as efficient as a simple random sample, while a value greater than 1.0 indicates the increase in the sampling error due to the use of a more complex and less statistically efficient design. CLUSTERS also computes the relative error and confidence limits for the estimates.

Sampling errors are presented in Tables C.2-C. 15 for variables considered to be of major interest. Results are presented for the urban and rural areas separated and study domains. For each variable, the type of statistic (mean or proportion) and the base population are given in Table C.1. For each variable, Tables C.2-C. 18 present the value of the statistic (R), its standard enror (SE), the number of unweighted (N) and weighted cases (WN), the design effect (DEFT), the relative standard error (SE/R), and the 95 percent confidence limits ($\mathrm{R} \pm 2 \mathrm{SE}$).

The confidence limits have the following interpretation. For the mean number of children ever born (EVBORN), the overall average from the sample is 3.105 and its standard error is 0.038 . Therefore, to obtain the 95 percent confidence limits, one adds and subtracts twice the standard error to the sample estimate, i.e., $3.105 \pm$ (2×0.038), which means that there is a high probability (95 percent) that the true average number of children ever bom is between 3.03 and 3.18.

The relative standard error for most estimates for the country as a whole is small, except for estimates of very small proportions. The magnitude of the error increases as estimates for subpopulations such as geographical areas are considered. For the variable children ever born, for instance, the relative standard error (as a percentage of the estimated mean) for the whole country is 1.2 percent and is between 1.2 and 5.3 percent for the different study domains.

Table C. 1 List of selected variables for sampling errors, Tanzania 1991/92

Variable	Type	Description	Base population
URBRUR	Proportion	Urban resident	All women
SECOND	Proportion	Secondary or more	All women
CURMAR	Proportion	Currently in union	All women
AGEM20	Proportion	Union before 20	Ever in union
SEX18	Proportion	Sex before 18	Ever in union
PREGNT	Proportion	Pregnant	Women in union
EVBORN	Mean	Children ever born	All women
EVB40	Mean	Children ever bom	Women 40-49
SURVIV	Mean	Children surviving	All women
KMETHO	Proportion	Knowing any method	Women in union
KMDMET	Proportion	Knowing any modern method	Women in union
KSRCE	Proportion	Knowing method source	Women in union
EVUSE	Proportion	Ever use any method	Women in union
CUSE	Proportion	Using any method	Women in union
CUMODE	Proportion	Using any modern method	Women in union
CUPILL	Proportion	Using pill	Women in union
CUIUD	Proportion	Using IUD	Women in union
CUSTER	Proportion	Using female sterilisation	Women in union
CUCOND	Proportion	Using condom	Women in union
CUPABS	Proportion	Currently using abstinence	Women in union
PSOURC	Proportion	Public source user	User modern method
NOMORE	Proportion	Desiring no more children	Women in union
DELAY	Proportion	Delay child at least 2 years	Women in union
IDEAL	Mean	Ideal number of children	All women
TETANU	Proportion	Received tetanus	Births last 5 years
MEDELI	Proportion	Medical attention at birth	Births last 5 years
DIARR1	Proportion	Diarrhoea last 2 weeks	Children < 5 years
DIARR2	Proportion	Diarrhoea last 24 hours	Children < 5 years
ORSTRE	Proportion	Received ORS treatment	Diarrhea last 2 weeks
MEDTRE	Proportion	Received medical treatment	Diarrhea last 2 weeks
HCARD	Proportion	Had health card	Children 12-23 months
BCG	Proportion	Received BCG	Children 12-23 months
DPT3	Proportion	Received DPT (3 doses)	Children 12-23 months
POL3	Proportion	Received polio (3 doses)	Children 12-23 months
MEASLE	Proportion	Received measles	Children 12-23 months
FULLIM	Proportion	Fully immunised	Children 12-23 months
WGTAGE	Proportion	Weight for age < 2 standard	Children < 3 years
HGTLNG	Proportion	Height for age < 2 standard	Children < 3 years
WGTLNG	Proportion	Weight for age < 2 standard	Children < 3 years

Table C. 2 Sampling errors, entire sample, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			(N)	(WN)			R-2SE	R+2SE
URBRUR	. 248	. 031	9238	9238	6.863	. 124	. 187	. 310
SECOND	. 048	. 007	9238	9238	3.005	. 139	. 035	. 061
CURMAR	. 654	. 009	9238	9238	1.815	. 014	. 636	. 672
AGEM20	. 669	. 010	7009	7055	1.778	. 015	. 649	. 689
SEX18	. 646	. 010 -	7006	7053	1.715	. 015	. 627	. 666
PREGNT	. 135	. 004	6091	6038	1.010	. 033	. 126	. 143
EVBORN	3.105	. 038	9238	9238	1.193	. 012	3.030	3.180
EVB40	6.920	. 103	1456	1410	1.256	. 015	6.715	7.125
SURVIV	2.575	. 031	9238	9238	1.156	. 012	2.514	2.637
KMETHO	. 802	. 011	6091	6038	2.166	. 014	. 780	. 825
KMDMET	. 776	. 012	6091	6038	2.227	. 015	. 753	. 800
KSRCE	. 711	. 013	6091	6038	2.283	. 019	. 684	. 737
EVUSE	. 257	. 012	6091	6038	2.102	. 046	. 233	. 280
CUSE	. 104	. 006	6091	6038	1.546	. 058	. 092	. 116
CUMODE	. 066	. 006	6091	6038	1.741	. 084	. 055	. 077
CUPILL	. 034	. 004	6091	6038	1.792	. 123	. 025	. 042
CUIUD	. 004	. 000	6091	6038	. 000	. 000	. 004	. 004
CUSTER	. 016	. 002	6091	6038	1.129	. 112	. 013	. 020
CUCOND	. 007	. 001	6091	6038	1.255	. 192	. 004	. 010
CUPABS	. 013	. 002	6091	6038	1.583	. 173	. 009	. 018
PSOURC	. 729	. 023	477	545	1.108	. 031	. 684	. 775
NOMORE	. 214	. 007	6091	6038	1.394	. 034	. 200	. 229
DELAY	. 416	. 008	6091	6038	1.256	. 019	. 400	. 432
IDEAL	6.051	. 062	7957	7976	2.110	. 010	5.927	6.175
TETANU	. 900	. 006	8062	8035	1.542	. 007	. 888	. 911
MEDELI	. 531	. 021	8062	8035	3.073	. 039	. 490	. 573
DIARR1	. 131	. 006	7209	7173	1.481	. 046	. 119	. 142
DIARR2	. 043	. 003	7209	7173	1.332	. 074	. 037	. 050
ORSTRE	. 574	. 022	934	936	1.306	. 038	. 530	. 617
MEDTRE	. 595	. 026	934	936	1.560	. 043	. 544	. 647
HCARD	. 781	. 015	1617	1616	1.453	. 019	. 751	. 812
BCG	. 954	. 009	1617	1616	1.618	. 009	. 937	. 972
DPT3	. 798	. 015	1617	1616	1.505	. 019	. 768	. 829
POL3	. 771	. 016	1617	1616	1.544	. 021	. 738	. 803
MEASLE	. 812	. 014	1617	1616	1.410	. 017	. 784	. 840
FULLIM	. 711	. 017	1617	1616	1.525	. 025	. 676	. 746
WGTAGE	. 288	. 009	6111	6095	1.471	. 031	. 270	. 306
HGTLNG	. 467	. 011	6111	6095	1.579	. 023	. 445	. 488
WGTLNG	. 056	. 004	6111	6095	1.301	. 069	. 049	. 064

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
URBRUR	1.000	. 000	1838	2294	. 000	. 000	1.000	1.000
SECOND	. 120	. 021	1838	2294	2.809	. 178	. 077	. 162
CURMAR	. 572	. 023	1838	2294	2.003	. 040	. 526	. 618
AGEM20	. 592	. 019	1345	1699	1.435	. 032	. 553	. 630
SEX18	. 605	. 020	1345	1699	1.508	. 033	. 565	. 645
PREGNT	. 125	. 012	1055	1312	1.149	. 094	. 101	. 148
EVBORN	2.580	. 100	1838	2294	1.538	. 039	2.379	2.781
EVB40	6.322	. 283	240	292	1.298	. 045	5.756	6.888
SURVIV	2.160	. 071	1838	2294	1.294	. 033	2.017	2.302
KMETHO	. 935	. 015	1055	1312	1.979	. 016	. 906	. 965
KMDMET	. 930	. 016	1055	1312	2.015	. 017	. 899	. 962
KSRCE	. 880	. 020	1055	1312	1.973	. 022	. 840	. 919
EVUSE	. 440	. 027	1055	1312	1.758	. 061	. 386	. 494
CUSE	. 178	. 018	1055	1312	1.564	. 104	. 141	. 215
CUMODE	. 140	. 019	1055	1312	1.784	. 136	. 101	. 178
CUPILL	. 084	. 016	1055	1312	1.862	. 190	. 052	. 115
CUIUD	. 011	. 004	1055	1312	1.223	. 361	. 003	. 019
CUSTER	. 017	. 004	1055	1312	1.098	. 256	. 008	. 026
CUCOND	. 016	. 004	1055	1312	1.137	. 275	. 007	. 025
CUPABS	. 015	. 004	1055	1312	1.112	. 277	. 007	. 023
PSOURC	. 777	. 027	199	262	. 928	. 035	. 722	. 832
NOMORE	. 257	. 018	1055	1312	1.370	. 072	. 220	. 294
DELAY	. 403	. 014	1055	1312	. 912	. 034	. 375	. 431
IDEAL	5.342	. 179	1708	2122	3.119	. 034	4.984	5.700
TETANU	. 934	. 016	1264	1646	2.068	. 017	. 903	. 965
MEDELI	. 859	. 013	1264	1646	1.271	. 016	. 832	. 886
DIARR1	. 148	. 018	1124	1437	1.680	. 118	. 113	. 184
DIARR2	. 043	. 009	1124	1437	1.518	. 210	. 025	. 061
ORSTRE	. 561	. 048	156	213	1.240	. 086	. 464	. 657
MEDTRE	. 701	. 064	156	213	1.801	. 092	. 572	. 829
HCARD	. 824	. 029	247	334	1.212	. 035	. 766	. 882
BCG	. 993	. 005	247	334	. 961	. 005	. 984	1.003
DPT3	. 889	. 024	247	334	1.246	. 027	. 841	. 937
POL3	. 875	. 036	247	334	1.786	. 041	. 802	. 947
MEASLE	. 916	. 026	247	334	1.557	. 029	. 863	. 969
FULLIM	. 838	. 038	247	334	1.676	. 045	. 762	. 913
WGTAGE	. 262	. 030	963	1239	1.965	. 113	. 202	. 321
HGTLNG	. 416	. 045	963	1239	2.769	. 108	. 326	. 505
WGTLNG	. 051	. 012	963	1239	1.718	. 241	. 026	. 075

Table C. 4 Sampling errors, rural, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			(N)	(WN)			R-2SE	R+2SE
URBRUR	. 000	. 000	7400	6944	. 000	. 000	. 000	. 000
SECOND	. 024	. 005	7400	6944	2.651	. 195	. 015	. 034
CURMAR	. 681	. 009	7400	6944	1.605	. 013	. 663	. 698
AGEM20	. 693	. 010	5664	5356	1.669	. 015	. 673	. 714
SEX18	. 660	. 012	5661	5354	1.891	. 018	. 636	. 683
PREGNT	. 137	. 005	5036	4726	. 931	. 033	. 128	. 146
EVBORN	3.279	. 039	7400	6944	1.086	. 012	3.201	3.357
EVB40	7.076	. 103	1216	1119	1.188	. 015	6.870	7.282
SURVIV	2.713	. 032	7400	6944	1.075	. 012	2.648	2.777
KMETHO	. 766	. 011	5036	4726	1.884	. 015	. 743	. 788
KMDMET	. 734	. 012	5036	4726	1.889	. 016	. 710	. 757
KSRCE	. 664	. 013	5036	4726	1.936	. 019	. 638	. 690
EVUSE	. 206	. 010	5036	4726	1.746	. 048	. 186	. 226
CUSE	. 084	. 005	5036	4726	1.353	. 063	. 073	. 094
CUMODE	. 045	. 003	5036	4726	1.106	. 072	. 039	. 051
CUPILL	. 020	. 002	5036	4726	1.270	. 126	. 015	. 025
CUIUD	. 003	. 000	5036	4726	. 000	. 000	. 003	. 003
CUSTER	. 016	. 002	5036	4726	1.146	. 126	. 012	. 020
CUCOND	. 004	. 001	5036	4726	. 000	. 236	. 002	. 007
CUPABS	. 013	. 003	5036	4726	1.755	. 215	. 007	. 019
PSOURC	. 685	. 032	278	282	1.137	. 046	. 622	. 749
NOMORE	. 203	. 007	5036	4726	1.147	. 032	. 190	. 216
DELAY	. 420	. 009	5036	4726	1.335	. 022	. 401	. 438
IDEAL	6.308	. 061	6249	5854	1.797	. 010	6.187	6.429
TETANU	. 891	. 006	6798	6390	1.462	. 007	. 878	. 903
MEDELI	. 447	. 017	6798	6390	2.405	. 039	. 412	. 482
DIARR1	. 126	. 006	6085	5736	1.317	. 045	. 115	. 137
DIARR2	. 043	. 003	6085	5736	1.271	. 077	. 037	. 050
ORSTRE	. 578	. 024	778	723	1.308	. 042	. 529	. 626
MEDTRE	. 564	. 028	778	723	1.488	. 049	. 509	. 619
HCARD	. 770	. 017	1370	1282	1.445	. 021	. 737	. 803
BCG	. 944	. 010	1370	1282	1.625	. 011	. 923	. 965
DPT3	. 775	. 018	1370	1282	1.555	. 023	. 739	. 811
POL3	. 743	. 018	1370	1282	1.494	. 024	. 707	. 779
MEASLE	. 785	. 014	1370	1282	1.266	. 018	. 756	. 813
FULLIM	. 678	. 019	1370	1282	1.458	. 028	. 641	. 715
WGTAGE	. 295	. 009	5148	4856	1.430	. 032	. 276	. 313
HGTLNG	. 480	. 010	5148	4856	1.361	. 021	. 460	. 500
WGTLNG	. 058	. 004	5148	4856	1.094	. 061	. 051	. 065

Table C. 5 Sampling errors, Mainland, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative etror (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
URBRUR	. 246	. 032	8718	8978	6.899	. 129	. 182	. 309
SECOND	. 041	. 007	8718	8978	3.238	. 167	. 028	. 055
CURMAR	. 654	. 009	8718	8978	1.811	. 014	. 635	. 672
AGEM20	. 665	. 010	6624	6864	1.757	. 015	. 645	. 686
SEX18	. 647	. 010	6621	6861	1.712	. 016	. 627	. 667
PREGNT	. 134	. 004	5757	5870	1.001	. 033	. 125	. 143
EVBORN	3.104	. 038	8718	8978	1.189	. 012	3.027	3.180
EVB40	6.921	. 105	1378	1371	1.259	. 015	6.711	7.131
SURVIV	2.571	. 031	8718	8978	1.153	. 012	2.508	2.633
KMETHO	. 798	. 011	5757	5870	2.153	. 014	. 775	. 821
KMDMET	. 771	. 012	5757	5870	2.216	. 016	. 747	. 796
KSRCE	. 705	. 014	5757	5870	2.278	. 019	. 677	. 732
EVUSE	. 261	. 012	5757	5870	2.077	. 046	. 237	. 285
CUSE	. 105	. 006	5757	5870	1.534	. 059	. 093	. 118
CUMODE	. 066	. 006	5757	5870	1.735	. 086	. 054	. 077
CUPILL	. 034	. 004	5757	5870	1.784	. 126	. 025	. 042
CUIUD	. 004	. 001	5757	5870	. 000	. 231	. 002	. 006
CUSTER	. 016	. 002	5757	5870	1.122	. 115	. 013	. 020
CUCOND	. 007	. 001	5757	5870	1.256	. 198	. 004	. 010
CUPABS	. 014	. 002	5757	5870	1.568	. 175	. 009	. 019
PSOURC	. 723	. 023	445	530	1.103	. 032	. 676	. 769
NOMORE	. 215	. 008	5757	5870	1.386	. 035	. 200	. 230
DELAY	. 414	. 008	5757	5870	1.252	. 020	. 398	. 430
IDEAL	6.028	. 063	7481	7739	2.116	. 010	5.902	6.155
TETANU	. 899	. 006	7609	7797	1.538	. 007	. 887	. 911
MEDELI	. 537	. 021	7609	7797	3.064	. 039	. 494	. 579
DIARR1	. 131	. 006	6788	6950	1.478	. 047	. 118	. 143
DIARR2	. 042	. 003	6788	6950	1.357	. 080	. 035	. 048
ORSTRE	. 575	. 022	877	907	1.300	. 039	. 530	. 620
MEDTRE	. 592	. 027	877	908	1.550	. 045	. 539	. 645
HCARD	. 777	. 016	1522	1565	1.448	. 020	. 746	. 809
BCG	. 953	. 009	1522	1565	1.597	. 009	. 935	. 971
DPT3	. 794	. 016	1522	1565	1.492	. 020	. 763	. 826
POL3	. 766	. 017	1522	1565	1.532	. 022	. 732	. 799
MEASLE	. 810	. 014	1522	1565	1.407	. 018	. 781	. 839
FULLIM	. 707	. 018	1522	1565	1.521	. 025	. 671	. 743
WGTAGE	. 285	. 009	5816	5943	1.471	. 032	. 267	. 303
HGTLNG	. 466	. 011	5816	5943	1.571	. 023	. 445	. 488
WGTLNG	. 055	. 004	5816	5943	1.288	. 071	. 047	. 063

Table C. 6 Sampling etrors, Dar es Salaam, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
URBRUR	. 889	. 027	505	585	1.931	. 030	. 835	. 943
SECOND	. 095	. 021	505	585	1.580	. 218	. 053	. 136
CURMAR	. 597	. 016	505	585	. 741	. 027	. 564	. 629
AGEM20	. 613	. 027	374	423	1.066	. 044	. 559	. 667
SEX18	. 588	. 032	374	423	1.237	. 054	. 525	. 651
PREGNT	. 105	. 014	301	349	. 808	. 136	. 077	. 134
EVBORN	2.354	. 111	505	585	. 923	. 047	2.132	2.576
EVB40	6.083	. 470	56	66	1.089	. 077	5.144	7.022
SURVIV	1.957	. 113	505	585	1.130	. 058	1.730	2.184
KMETHO	. 917	. 033	301	349	2.076	. 036	. 851	. 983
KMDMET	. 911	. 033	301	349	2.011	. 036	. 845	. 977
KSRCE	. 849	. 036	301	349	1.739	. 042	. 777	. 921
EVUSE	. 495	. 033	301	349	1.127	. 066	. 430	. 560
CUSE	. 157	. 023	301	349	1.072	. 143	. 112	. 202
CUMODE	. 109	. 023	301	349	1.294	. 213	. 063	. 156
CUPILL	. 057	. 015	301	349	1.116	. 261	. 027	. 087
CUIUD	. 005	. 003	301	349	. 790	. 628	-. 001	. 012
CUSTER	. 022	. 007	301	349	. 851	. 331	. 007	. 036
CUCOND	. 019	. 006	301	349	. 815	. 335	. 006	. 032
CUPABS	. 006	. 004	301	349	. 865	. 621	-. 002	. 014
PSOURC	. 697	. 056	51	52	. 861	. 080	. 585	. 809
NOMORE	. 257	. 029	301	349	1.143	. 112	. 199	. 315
DELAY	. 353	. 029	301	349	1.055	. 082	. 295	. 411
IDEAL	5.182	. 178	491	572	1.532	. 034	4.826	5.538
TETANU	. 956	. 012	314	373	1.052	. 013	. 931	. 980
MEDELI	. 865	. 040	314	373	1.905	. 046	. 786	. 944
DIARR1	. 120	. 016	272	322	. 809	. 133	. 088	. 152
DIARR2	. 023	. 008	272	322	. 896	. 354	. 007	. 039
ORSTRE	. 309	. 099	32	39	1.118	. 321	. 110	. 508
MEDTRE	. 621	. 096	32	39	1.106	. 154	. 429	. 812
HCARD	. 591	. 059	47	55	. 828	. 100	. 473	. 708
BCG	. 983	. 016	47	55	. 836	. 016	. 952	1.015
DPT3	. 850	. 038	47	55	. 724	. 045	. 774	. 926
POL3	. 826	. 038	47	55	. 686	. 046	. 750	. 902
MEASLE	. 870	. 050	47	55	1.023	. 058	. 769	. 970
FULLIM	. 774	. 054	47	55	. 884	. 070	. 666	. 883
WGTAGE	. 199	. 024	228	277	. 934	. 122	. 151	. 248
HGTLNG	. 285	. 035	228	277	1.227	. 123	. 215	. 355
WGTLNG	. 068	. 021	228	277	1.272	. 304	. 027	. 110

Table C. 7 Sampling errors, Other urban (Mainland), Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
URBRUR	1.000	. 000	1178	1686	. 000	. 000	1.000	1.000
SECOND	. 107	. 028	1178	1686	3.064	. 257	. 052	. 163
CURMAR	. 573	. 031	1178	1686	2.155	. 054	. 511	. 635
AGEM20	. 582	. 024	866	1265	1.416	. 041	. 534	. 629
SEX18	. 617	. 024	866	1265	1.424	. 038	. 570	. 664
PREGNT	. 135	. 016	689	966	1.254	. 121	. 102	. 168
EVBORN	2.689	. 120	1178	1686	1.452	. 045	2.449	2.928
EVB40	6.421	. 353	160	220	1.316	. 055	5.715	7.128
SURVIV	2.246	. 079	1178	1686	1.135	. 035	2.087	2.405
KMETHO	. 942	. 016	689	966	1.781	. 017	. 911	. 974
KMDMET	. 938	. 017	689	966	1.858	. 018	. 903	. 972
KSRCE	. 891	. 023	689	966	1.903	. 025	. 846	. 936
EVUSE	. 433	. 035	689	966	1.836	. 080	. 364	. 503
CUSE	. 187	. 024	689	966	1.610	. 128	. 140	. 235
CUMODE	. 151	. 024	689	966	1.765	. 160	. 103	. 199
CUPILL	. 095	. 021	689	966	1.863	. 219	. 053	. 137
CUIUD	. 013	. 005	689	966	1.238	. 415	. 002	. 023
CUSTER	. 016	. 005	689	966	1.079	. 323	. 006	. 026
CUCOND	. 014	. 006	689	966	1.304	. 422	. 002	. 025
CUPABS	. 017	. 006	689	966	1.135	. 327	. 006	. 028
PSOURC	. 793	. 030	136	208	. 865	. 038	. 732	. 853
NOMORE	. 257	. 024	689	966	1.419	. 092	. 210	. 305
DELAY	. 420	. 017	689	966	. 887	. 040	. 387	. 454
IDEAL	5.408	. 233	1068	1527	3.377	. 043	4.941	5.875
TETANU	. 930	. 019	872	1273	2.035	. 021	. 891	. 969
MEDELI	. 863	. 014	872	1273	1.073	. 016	. 836	. 891
DIARR1	. 159	. 022	776	1110	1.645	. 136	. 116	. 202
DIARR2	. 048	. 011	776	1110	1.471	. 233	. 026	. 071
ORSTRE	. 605	. 058	117	176	1.293	. 096	. 489	. 722
MEDTRE	. 719	. 077	117	176	1.871	. 107	. 565	. 874
HCARD	. 863	. 027	176	273	1.062	. 032	. 809	. 918
BCG	. 995	. 005	176	273	. 954	. 005	. 986	1.005
DPT3	. 894	. 029	176	273	1.280	. 032	. 837	. 951
POL3	. 881	. 044	176	273	1.881	. 050	. 793	. 969
MEASLE	. 923	. 030	176	273	1.565	. 033	. 862	. 983
FULLIM	. 847	. 046	176	273	1.750	. 054	. 756	. 939
WGTAGE	. 274	. 035	685	965	1.883	. 127	. 204	. 344
HGTLNG	. 448	. 050	685	965	2.510	. 112	. 348	. 548
WGTLNG	. 044	. 014	685	965	1.675	. 307	. 017	. 071

Table C. 8 Sampling errors, Rural (Mainland), Tanzania 1991/92

Variable	Value (R)	Standard erior (SE)	Number of cases		Design effect (DEFT)	Relative emor (SE/R)	Confidence limis	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
URBRUR	. 000	. 000	7035	6707	. 000	. 000	. 000	. 000
SECOND	. 020	. 005	7035	6707	2.890	. 241	. 010	. 030
CURMAR	. 679	. 009	7035	6707	1.610	. 013	. 661	. 697
AGEM20	. 690	. 011	5384	5176	1.671	. 015	. 669	. 711
SEX18	. 659	. 012	5381	5173	1.904	. 019	. 635	. 684
PREGNT	. 137	. 005	4767	4555	. 924	. 034	. 127	. 146
EVBORN	3.273	. 040	7035	6707	1.086	. 012	3.194	3.353
EVB40	7.073	. 105	1162	1086	1.196	. 015	6.862	7.284
SURVIV	2.706	. 033	7035	6707	1.077	. 012	2.639	2.772
KMETHO	. 758	. 012	4767	4555	1.866	. 015	. 735	. 781
KMDMET	. 725	. 012	4767	4555	1.871	. 017	. 701	. 749
KSRCE	. 654	. 013	4767	4555	1.922	. 020	. 627	. 680
EVUSE	. 207	. 010	4767	4555	1.752	. 050	. 186	. 227
CUSE	. 084	. 005	4767	4555	1.359	. 065	. 073	. 095
CUMODE	. 044	. 003	4767	4555	1.114	. 075	. 037	. 051
CUPILL	. 019	. 003	4767	4555	1.295	. 135	. 014	. 024
CUIUD	. 002	. 000	4767	4555	. 000	. 000	. 002	. 002
CUSTER	. 016	. 002	4767	4555	1.155	. 131	. 012	. 020
CUCOND	. 005	. 001	4767	4555	. 000	. 241	. 002	. 007
CUPABS	. 014	. 003	4767	4555	1.739	. 215	. 008	. 019
PSOURC	. 673	. 033	258	269	1.134	. 049	. 607	. 740
NOMORE	. 202	. 007	4767	4555	1.122	. 032	. 189	. 215
DELAY	. 417	. 010	4767	4555	1.337	. 023	. 398	. 436
IDEAL	6.282	. 062	5922	5640	1.813	. 010	6.158	6.405
TETANU	. 889	. 007	6423	6152	1.467	. 007	. 876	. 902
MEDELI	. 449	. 018	6423	6152	2.427	. 040	. 413	. 485
DIARR1	. 126	. 006	5740	5518	1.327	. 047	. 114	. 137
DIARR2	. 041	. 003	5740	5518	1.312	. 084	. 034	. 048
ORSTRE	. 582	. 025	728	693	1.310	. 043	. 533	. 632
MEDTRE	. 559	. 028	728	693	1.490	. 051	. 502	. 615
HCARD	. 767	. 017	1299	1237	1.446	. 022	. 732	. 801
BCG	. 942	. 011	1299	1237	1.613	. 011	. 920	. 964
DPT3	. 770	. 018	1299	1237	1.551	. 024	. 733	. 807
POL3	. 737	. 019	1299	1237	1.490	. 025	. 700	. 774
MEASLE	. 783	. 015	1299	1237	1.266	. 019	. 753	. 812
FULLIM	. 673	. 019	1299	1237	1.457	. 029	. 634	. 711
WGTAGE	. 292	. 010	4903	4701	1.429	. 033	. 273	. 311
HGTLNG	. 481	. 010	4903	4701	1.368	. 021	. 460	. 501
WGTLNG	. 056	. 004	4903	4701	1.076	. 063	. 049	. 064

Table C. 9 Sampling errors, Zanzibar, Tanzania 1991/92								
Variable	Value (R)	$\begin{aligned} & \text { Standard } \\ & \text { error } \\ & \text { (SE) } \end{aligned}$	Number of cases		Design effect (DEFT)	$\begin{aligned} & \text { Relative } \\ & \text { error } \\ & \text { (SE/R) } \end{aligned}$	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	R+2SE
URBRUR	. 340	. 034	520	261	1.633	. 100	. 272	. 408
SECOND	. 280	. 031	520	261	1.564	. 110	. 219	. 342
CURMAR	. 646	. 022	520	261	1.066	. 035	. 601	. 691
AGEM20	. 792	. 017	385	192	. 797	. 021	. 759	. 825
SEX18	. 624	. 022	385	192	. 890	. 035	. 580	. 668
PREGNT	. 140	. 022	334	168	1.158	. 158	. 096	. 183
EVBORN	3.166	. 128	520	261	. 900	. 041	2.909	3.423
EVB40	6.891	. 395	78	39	. 898	. 057	6.101	7.680
SURVIV	2.744	. 102	520	261	. 820	. 037	2.539	2.949
KMETHO	. 959	. 013	334	168	1.198	. 014	. 932	. 985
KMDMET	. 959	. 013	334	168	1.198	. 014	. 932	. 985
KSRCE	. 925	. 015	334	168	1.060	. 017	. 895	. 956
EVUSE	. 111	. 022	334	168	1.261	. 195	. 068	. 155
CUSE	. 071	. 017	334	168	1.189	. 235	. 038	. 105
CUMODE	. 066	. 016	334	168	1.189	. 245	. 034	. 098
CUPILL	. 029	. 010	334	168	1.126	. 357	. 008	. 050
CUIUD	. 003	. 003	334	168	. 974	1.020	-. 003	. 008
CUSTER	. 015	. 006	334	168	. 963	. 435	. 002	. 027
CUCOND	. 008	. 003	334	168	. 596	. 358	. 002	. 014
CUPABS	. 005	. 004	334	168	. 943	. 715	-. 002	. 013
PSOURC	. 972	. 030	32	15	. 000	. 030	. 913	1.031
NOMORE	. 207	. 026	334	168	1.193	. 128	. 154	. 260
DELAY	. 494	. 027	334	168	. 974	. 054	. 441	. 548
IdEAL	6.799	. 275	476	236	1.666	. 040	6.249	7.349
TETANU	. 919	. 015	453	238	. 937	. 016	. 889	. 948
MEDELI	. 351	. 039	453	238	1.374	. 111	. 273	. 429
DIARR1	. 127	. 016	421	222	. 949	. 122	. 096	. 158
DIARR2	. 095	. 012	421	222	. 868	. 130	. 070	. 119
ORSTRE	. 533	. 078	57	28	1.135	. 147	. 376	. 690
MEDTRE	. 690	. 086	57	28	1.366	. 124	. 519	. 862
HCARD	. 910	. 026	95	51	. 916	. 029	. 857	. 962
BCG	1.000	. 000	95	51	. 000	. 000	1.000	1.000
DPT3	. 926	. 023	95	51	. 891	. 025	. 879	. 972
POL3	. 926	. 023	95	51	. 891	. 025	. 879	. 972
MEASLE	. 865	. 023	95	51	. 682	. 027	. 818	. 911
FULLIM	. 842	. 030	95	51	. 830	. 036	. 782	. 903
wGTAGE	. 399	. 044	295	152	1.375	. 111	. 310	. 487
HGTLNG	. 479	. 033	295	152	1.097	. 069	. 413	. 546
WGTLNG	. 110	. 021	295	152	1.222	. 194	. 067	. 152

Table C. 10 Sampling errors, Coast, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			(N)	(WN)			R-2SE	R+2SE
URBRUR	. 428	. 025	2271	1988	2.406	. 058	. 378	. 478
SECOND	. 078	. 010	2271	1988	1.857	. 134	. 057	. 099
CURMAR	. 632	. 012	2271	1988	1.163	. 019	. 609	. 656
AGEM20	. 665	. 014	1716	1507	1.225	. 021	. 637	. 693
SEX18	. 625	. 016	1715	1507	1.348	. 025	. 594	. 657
PREGNT	. 132	. 010	1425	1256	1.141	. 077	. 112	. 153
EVBORN	3.033	. 066	2271	1988	1.033	. 022	2.902	3.165
EVB40	6.843	. 174	355	307	1.038	. 025	6.494	7.192
SURVIV	2.488	. 060	2271	1988	1.137	. 024	2.367	2.609
KMETHO	. 877	. 014	1425	1256	1.551	. 015	. 850	. 904
KMDMET	. 869	. 014	1425	1256	1.540	. 016	. 842	. 897
KSRCE	. 825	. 014	1425	1256	1.413	. 017	. 797	. 854
EVUSE	. 352	. 017	1425	1256	1.371	. 049	. 317	. 386
CUSE	. 131	. 012	1425	1256	1.399	. 096	. 106	. 156
CUMODE	. 072	. 011	1425	1256	1.550	. 148	. 051	. 093
CUPILL	. 042	. 008	1425	1256	1.539	. 195	. 026	. 058
CUIUD	. 002	. 000	1425	1256	. 000	. 000	. 002	. 002
CUSTER	. 012	. 002	1425	1256	. 832	. 197	. 007	. 017
CUCOND	. 011	. 003	1425	1256	. 952	. 243	. 005	. 016
CUPABS	. 013	. 004	1425	1256	1.196	. 280	. 006	. 020
PSOURC	. 785	. 037	153	134	1.104	. 047	. 711	. 859
NOMORE	. 230	. 013	1425	1256	1.197	. 058	. 203	. 256
DELAY	. 415	. 017	1425	1256	1.337	. 042	. 380	. 449
IDEAL	5.928	. 105	2111	1855	1.714	. 018	5.717	6.138
TETANU	. 903	. 011	1818	1604	1.351	. 012	. 881	. 925
MEDELI	. 587	. 029	1818	1604	2.057	. 049	. 529	. 645
DIARR1	. 156	. 009	1612	1405	1.021	. 060	. 137	. 175
DIARR2	. 044	. 005	1612	1405	. 931	. 108	. 035	. 054
ORSTRE	. 584	. 046	260	219	1.439	. 079	. 492	. 677
MEDTRE	. 644	. 050	260	219	1.594	. 077	. 545	. 743
HCARD	. 759	. 031	358	309	1.310	. 040	. 698	. 820
BCG	. 950	. 022	358	309	1.733	. 023	. 907	. 993
DPT3	. 832	. 023	358	309	1.133	. 028	. 786	. 879
POL3	. 813	. 027	358	309	1.264	. 033	. 759	. 867
MEASLE	. 833	. 023	358	309	1.129	. 028	. 786	. 879
FULLIM	. 753	. 032	358	309	1.361	. 043	. 688	. 817
WGTAGE	. 308	. 018	1317	1171	1.354	. 058	. 272	. 343
HGTLNG	. 470	. 022	1317	1171	1.543	. 047	. 425	. 514
WGTLNG	. 088	. 010	1317	1171	1.239	. 110	. 069	. 108

Table C. 11 Sampling errors, Northem Highlands, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			(N)	(WN)			R-2SE	R+2SE
URBRUR	. 275	. 099	805	1090	6.297	. 360	. 077	. 474
SECOND	. 123	. 035	805	1090	3.017	. 284	. 053	. 193
CURMAR	. 558	. 045	805	1090	2.571	. 081	. 468	. 648
AGEM20	. 490	. 023	637	861	1.164	. 047	. 444	. 536
SEX18	. 440	. 027	637	861	1.371	. 061	. 386	. 494
PREGNT	. 113	. 013	472	608	. 876	. 113	. 088	. 139
EVBORN	2.908	. 154	805	1090	1.471	. 053	2.599	3.217
EVB40	7.289	. 309	125	151	1.250	. 042	6.671	7.907
SURVIV	2.651	. 140	805	1090	1.454	. 053	2.372	2.931
KMETHO	. 806	. 028	472	608	1.538	. 035	. 749	. 862
KMDMET	. 777	. 035	472	608	1.829	. 045	. 707	. 847
KSRCE	. 735	. 034	472	608	1.689	. 047	. 666	. 803
EVUSE	. 507	. 028	472	608	1.202	. 055	. 452	. 563
CUSE	. 240	. 022	472	608	1.115	. 091	. 196	. 284
CUMODE	. 178	. 020	472	608	1.136	. 112	. 138	. 218
CUPILL	. 080	. 021	472	608	1.672	. 262	. 038	. 122
CUIUD	. 025	. 007	472	608	. 978	. 284	. 011	. 039
CUSTER	. 048	. 009	472	608	. 899	. 185	. 030	. 066
CUCOND	. 021	. 007	472	608	1.123	. 357	. 006	. 035
CUPABS	. 017	. 006	472	608	1.001	. 348	. 005	. 029
PSOURC	. 616	. 039	102	144	. 803	. 063	. 538	. 694
NOMORE	. 321	. 028	472	608	1.318	. 088	. 265	. 378
DELAY	. 398	. 035	472	608	1.561	. 088	. 328	. 469
IDEAL	4.839	. 176	760	1026	2.471	. 036	4.487	5.192
TETANU	. 828	. 025	672	902	1.471	. 030	. 779	. 878
MEDELI	. 615	. 051	672	902	2.186	. 082	. 514	. 716
DIARR1	. 182	. 024	628	852	1.511	. 132	. 134	. 230
DIARR2	. 064	. 013	628	852	1.333	. 207	. 038	. 091
ORSTRE	. 557	. 058	92	155	1.169	. 103	. 442	. 672
MEDTRE	. 418	. 063	92	155	1.300	. 150	. 292	. 543
HCARD	. 728	. 054	144	203	1.477	. 074	. 620	. 836
BCG	. 960	. 033	144	203	2.020	. 034	. 895	1.025
DPT3	. 833	. 049	144	203	1.534	. 059	. 735	. 931
POL3	. 775	. 065	144	203	1.841	. 084	. 645	. 905
MEASLE	. 795	. 038	144	203	1.103	. 048	. 719	. 871
FULLIM	. 707	. 059	144	203	1.547	. 083	. 589	. 825
WGTAGE	. 279	. 018	516	687	. 849	. 065	. 243	. 315
HGTLNG	. 393	. 024	516	687	1.096	. 062	. 344	. 442
WGTLNG	. 056	. 010	516	687	. 991	. 187	. 035	. 077

Table C. 12 Sampling errors, Lake, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			Unweighted (N)	Weighted (WN)			R-2SE	$\mathrm{R}+2 \mathrm{SE}$
URBRUR	. 142	. 030	3089	3116	4.802	. 213	. 081	. 202
SECOND	. 029	. 010	3089	3116	3.257	. 340	. 009	. 048
CURMAR	. 673	. 011	3089	3116	1.250	. 016	. 652	. 694
AGEM20	. 730	. 019	2275	2304	2.076	. 026	. 692	. 769
SEX18	. 722	. 023	2274	2302	2.493	. 032	. 675	. 769
PREGNT	. 154	. 007	2098	2096	. 874	. 045	. 141	. 168
EVBORN	3.153	. 062	3089	3116	1.095	. 020	3.030	3.276
EVB40	7.305	. 188	439	428	1.245	. 026	6.930	7.681
SURVIV	2.602	. 047	3089	3116	. 991	. 018	2.509	2.695
KMETHO	. 741	. 020	2098	2096	2.065	. 027	. 702	. 781
KMDMET	. 702	. 020	2098	2096	2.043	. 029	. 661	. 743
KSRCE	. 613	. 023	2098	2096	2.137	. 037	. 567	. 658
EVUSE	. 158	. 016	2098	2096	2.038	. 103	. 126	. 191
CUSE	. 059	. 008	2098	2096	1.641	. 143	. 042	. 076
CUMODE	. 026	. 004	2098	2096	1.271	. 170	. 017	. 035
CUPILL	. 009	. 002	2098	2096	1.076	. 245	. 005	. 014
CUIUD	. 000	. 000	2098	2096	. 000	. 000	. 000	. 000
CUSTER	. 013	. 003	2098	2096	1.356	. 262	. 006	. 019
CUCOND	. 002	. 000	2098	2096	. 000	. 000	. 002	. 002
CUPABS	. 020	. 006	2098	2096	1.863	. 287	. 008	. 031
PSOURC	. 740	. 068	78	77	1.369	. 093	. 603	. 876
NOMORE	. 181	. 010	2098	2096	1.134	. 053	. 162	. 200
DELAY	. 411	. 012	2098	2096	1.153	. 030	. 386	. 436
IDEAL	6.665	. 104	2534	2547	2.004	. 016	6.458	6.873
TETANU	. 909	. 009	2912	2905	1.544	. 010	. 891	. 928
MEDELI	. 439	. 031	2912	2905	2.733	. 070	. 377	. 500
DIARR1	. 084	. 007	2567	2564	1.205	. 079	. 071	. 097
DIARR2	. 038	. 005	2567	2564	1.330	. 134	. 028	. 048
ORSTRE	. 482	. 039	226	216	1.127	. 081	. 404	. 560
MEDTRE	. 546	. 038	226	216	1.113	. 070	. 469	. 623
HCARD	. 785	. 027	546	548	1.548	. 035	. 730	. 839
BCG	. 935	. 016	546	548	1.462	. 017	. 904	. 967
DPT3	. 716	. 030	546	548	1.540	. 042	. 655	. 776
POL3	. 696	. 030	546	548	1.478	. 042	. 637	. 755
MEASLE	. 746	. 025	546	548	1.340	. 034	. 695	. 797
FULLIM	. 624	. 031	546	548	1.464	. 049	. 563	. 686
WGTAGE	. 235	. 013	2237	2224	1.429	. 057	. 208	. 261
HGTLNG	. 410	. 013	2237	2224	1.141	. 031	. 385	. 436
WGTLNG	. 050	. 005	2237	2224	1.123	. 103	. 040	. 061

Table C. 13 Sampling errors, Central, Tanzania 1991/92

Variable	Value (R)	Standard error (SE)	Number of cases		Design effect (DEFT)	Relative error (SE/R)	Confidence limits	
			(N)	(WN)			R-2SE	R+2SE
URBRUR	. 347	. 207	750	1004	11.923	. 597	-. 068	. 762
SECOND	. 035	. 011	750	1004	1.659	. 320	. 013	. 057
CURMAR	. 632	. 024	750	1004	1.381	. 038	. 584	. 681
AGEM20	. 613	. 022	566	769	1.063	. 036	. 570	. 657
SEX18	. 705	. 023	566	769	1.191	. 032	. 659	. 751
PREGNT	. 101	. 013	465	635	. 963	. 134	. 074	. 128
EVBORN	3.157	. 082	750	1004	. 749	. 026	2.993	3.320
EVB40	6.161	. 310	146	182	1.112	. 050	5.541	6.781
SURVIV	2.530	. 070	750	1004	. 777	. 028	2.391	2.670
KMETHO	. 924	. 032	465	635	2.574	. 034	. 860	. 987
KMDMET	. 906	. 037	465	635	2.771	. 041	. 831	. 981
KSRCE	. 853	. 047	465	635	2.861	. 055	. 759	. 947
EVUSE	. 280	. 069	465	635	3.332	. 248	. 141	. 419
CUSE	. 110	. 026	465	635	1.785	. 236	. 058	. 161
CUMODE	. 090	. 027	465	635	2.033	. 300	. 036	. 144
CUPILL	. 056	. 015	465	635	1.417	. 269	. 026	. 087
CUIUD	. 003	. 003	465	635	1.147	1.022	-. 003	. 008
CUSTER	. 004	. 003	465	635	1.077	. 772	-.002	. 011
CUCOND	. 016	. 007	465	635	1.166	. 428	. 002	. 029
CUPABS	. 008	. 004	465	635	1.042	. 544	-. 001	. 016
PSOURC	. 792	. 052	36	82	. 762	. 066	. 687	. 897
NOMORE	. 243	. 035	465	635	1.782	. 146	. 172	. 313
DELAY	. 478	. 029	465	635	1.267	. 061	. 419	. 537
IDEAL	6.347	. 149	686	931	1.499	. 023	6.049	6.644
TETANU	. 906	. 020	696	929	1.596	. 022	. 866	. 946
MEDELI	. 577	. 113	696	929	5.023	. 196	. 351	. 802
DIARR1	. 183	. 021	623	814	1.360	. 114	. 141	. 225
DIARR2	. 040	. 007	623	814	. 946	. 185	. 025	. 055
ORSTRE	. 582	. 065	117	149	1.332	. 111	. 453	. 711
MEDTRE	. 647	. 067	117	149	1.438	. 103	. 513	. 781
HCARD	. 875	. 016	144	180	. 576	. 019	. 842	. 908
BCG	. 964	. 021	144	180	1.339	. 022	. 922	1.007
DPT3	. 835	. 038	144	180	1.196	. 046	. 759	. 912
POL3	. 836	. 039	144	180	1.229	. 047	. 757	. 914
MEASLE	. 878	. 055	144	180	1.945	. 062	. 769	. 988
FULLIM	. 795	. 049	144	180	1.415	. 062	. 696	. 894
WGTAGE	. 358	. 030	548	716	1.352	. 083	. 299	. 417
HGTLNG	. 524	. 047	548	716	2.143	. 090	. 430	. 619
WGTLNG	. 040	. 014	548	716	1.623	. 340	. 013	. 067

Table C. 15 Sampling errors, South, Tanzania 1991/92									
Variable	Value (R)	Standard error (SE)	Number of cases Unweighted Weighted (N) (WN)		Design effect (DEFT)	Relative error (SE/R)	Confidence limits		
					R-2SE		R+2SE		
URBRUR	. 190	. 034	1145	899		2.891	. 177	. 123	. 257
SECOND	. 010	. 004	1145	899	1.334	. 385	. 002	. 018	
CURMAR	. 683	. 019	1145	899	1.350	. 027	. 646	. 720	
AGEM20	. 755	. 019	877	692	1.292	. 025	. 717	. 792	
SEX18	. 707	. 018	877	692	1.169	. 025	. 671	. 743	
PREGNT	. 124	. 014	774	614	1.191	. 114	. 096	. 152	
EVBORN	3.132	. 088	1145	899	. 996	. 028	2.956	3.309	
EVB40	6.444	. 199	225	187	. 928	. 031	6.045	6.843	
SURVIV	2.507	. 067	1145	899	. 931	. 027	2.373	2.641	
KMETHO	. 886	. 011	774	614	. 979	. 013	. 864	. 908	
KMDMET	. 868	. 010	774	614	. 828	. 012	. 848	. 889	
KSRCE	. 748	. 018	774	614	1.162	. 024	. 712	. 784	
EVUSE	. 186	. 017	774	614	1.229	. 092	. 152	. 221	
CUSE	. 065	. 009	774	614	1.056	. 144	. 047	. 084	
CUMODE	. 048	. 007	774	614	. 939	. 150	. 034	. 062	
CUPILL	. 018	. 004	774	614	. 922	. 243	. 009	. 027	
CUIUD	. 000	. 000	774	614	. 000	. 000	. 000	. 000	
CUSTER	. 023	. 006	774	614	1.108	. 260	. 011	. 035	
CUCOND	. 003	. 002	774	614	1.025	. 726	-. 001	. 006	
CUPABS	. 001	. 001	774	614	. 970	1.007	-. 001	. 004	
PSOURC	. 647	. 077	52	39	1.144	. 118	. 494	. 800	
NOMORE	. 215	. 019	774	614	1.298	. 089	. 176	. 253	
DELAY	. 374	. 024	774	614	1.399	. 065	. 325	. 422	
IDEAL	5.883	. 141	1040	811	1.659	. 024	5.600	6.165	
TETANU	. 927	. 010	866	657	1.007	. 011	. 906	. 947	
MEDELI	. 669	. 026	866	657	1.391	. 039	. 617	. 721	
DIARR1	. 124	. 013	769	586	1.062	. 105	. 098	. 150	
DIARR2	. 039	. 008	769	586	1.179	. 213	. 022	. 056	
ORSTRE	. 628	. 047	100	73	. 916	. 075	. 534	. 723	
MEDTRE	. 641	. 052	100	73	1.013	. 081	. 537	. 745	
HCARD	. 874	. 026	178	140	1.049	. 030	. 822	. 927	
BCG	. 981	. 010	178	140	1.020	. 011	. 961	1.002	
DPT3	. 914	. 038	178	140	1.800	. 041	. 838	. 990	
POL3	. 904	. 039	178	140	1.775	. 043	. 825	. 982	
MEASLE	. 893	. 031	178	140	1.329	. 035	. 831	. 955	
FULLIM	. 848	. 042	178	140	1.566	. 050	. 764	. 933	
WGTAGE	. 366	. 025	668	509	1.307	. 069	. 315	. 417	
HGTLNG	. 597	. 023	668	509	1.197	. 039	. 550	. 644	
WGTLNG	. 056	. 007	668	509	. 742	. 119	. 042	. 069	

APPENDIX D

DATA QUALITY TABLES

APPENDIX D

DATA QUALITY TABLES

Table	D. 1 House	old age di	tribution	househol	mpulation	y sex (wei	hted), Tan	nia 1991/9	
	Males		Females		Age	Males		Females	
Age	Number	Percent	Number	Percent		Number	Percent	Number	Percent
0	857	4.0	842	3.8	36	154	0.7	204	0.9
1	831	3.9	764	3.4	37	141	0.7	168	0.8
2	744	3.5	688	3.1	38	158	0.7	228	1.0
3	676	3.2	745	3.3	39	112	0.5	145	0.7
4	750	3.5	731	3.3	40	299	1.4	227	1.0
5	686	3.2	634	2.8	41	95	0.4	144	0.6
6	728	3.4	703	3.2	42	163	0.8	143	0.6
7	668	3.2	660	3.0	43	116	0.5	127	0.6
8	617	2.9	711	3.2	44	72	0.3	86	0.4
9	595	2.8	591	2.7	45	199	0.9	218	1.0
10	641	3.0	646	2.9	46	114	0.5	131	0.6
11	553	2.6	524	2.4	47	89	0.4	101	0.5
12	615	2.9	621	2.8	48	126	0.6	147	0.7
13	652	3.1	666	3.0	49	133	0.6	103	0.5
14	616	2.9	556	2.5	50	198	0.9	176	0.8
15	552	2.6	425	1.9	51	88	0.4	146	0.7
16	557	2.6	488	2.2	52	112	0.5	193	0.9
17	460	2.2	411	1.8	53	66	0.3	158	0.7
18	482	2.3	473	2.1	54	92	0.4	145	0.7
19	324	1.5	500	2.2	55	150	0.7	190	0.9
20	421	2.0	512	2.3	56	93	0.4	139	0.6
21	288	1.4	338	1.5	57	93	0.4	96	0.4
22	269	1.3	388	1.7	58	113	0.5	104	0.5
23	255	1.2	381	1.7	59	75	0.4	62	0.3
24	215	1.0	320	1.4	60	162	0.8	222	1.0
25	314	1.5	393	1.8	61	53	0.3	30	0.1
26	266	1.3	304	1.4	62	109	0.5	100	0.4
27	227	1.1	328	1.5	63	75	0.4	61	0.3
28	256	1.2	324	1.5	64	74	0.3	45	0.2
29	194	0.9	304	1.4	65	124	0.6	136	0.6
30	411	1.9	407	1.8	66	37	0.2	44	0.2
31	148	0.7	198	0.9	67	57	0.3	42	0.2
32	244	1.2	252	1.1	68	66	0.3	58	0.3
33	149	0.7	157	0.7	69	69	0.3	40	0.2
34	142	0.7	191	0.9	70+	580	2.7	439	2.0
35	261	1.2	267	1.2	Don't kn	ow/			
					Missing	44	0.2	12	0.1
					Total	21170	100.0	22257	100.0

Note: The de facto population includes all residents and nonresidents who slept in the household the night before the interview.

Table D. 2 Age distribution of eligible and interviewed women

Five-year age distribution of the de facto household population of women aged 10-54, five-year age distribution of interviewed women aged 15-49, and percentage of eligible women who were interviewed (weighted), Tanzania 1991/92

Age	Household population of women		Interviewed women		Percent interviewed (weighted)
	Number	Percent	Number	Percent	
10-14	3013	NA	NA	NA	NA
15-19	2297	24.1	2183	23.6	95.0
20-24	1939	20.3	1882	20.4	97.0
25-29	1653	17.3	1599	17.3	96.7
30-34	1206	12.6	1165	12.6	96.6
25-39	1012	10.6	1000	10.8	98.8
40-44	727	7.6	715	7.7	98.4
45-49	701	7.4	695	7.5	99.1
50-54	818	NA	NA	NA	NA
15-49	9536	NA	9238	NA	96.9

Note: The de facto population includes all residents and nonresidents who slept in the household the night before interview.
NA = Not applicable

Table D. 3 Completeness of reporting

Percentage of observations missing information for selected demographic and health questions (weighted), Tanzania 1991/92

	Reference group	Percentage missing information	Number of Cases
Birth date Month only Month and year	Births in last 15 years	16.7	20502
Age at death	Deaths to births in last 15 years	0.5	20502
Age/date at first union ${ }^{1}$	Ever-married women	0.2	2983
Respondent's education	All women	10.9	6977
Child's size at birth	Births in last 59 months	0.0	9238
Anthropometry ${ }^{2}$ Height missing Weight missing Height and weight missing	Living children age 0-59 months	1.0	4248
Diarrhoea in last 2 weeks	Living children age 0-59 months	7.2	7.1

[^14]Table D. 4 Births by calendar year since birth
Distribution of births by calendar years since birth for living (L), dead (D), and all (T) children, according to reporting completeness, sex ratio at birth, and ratio of births by calendar year, Tanzania 1991/92

Year	Number of births			Pcrcentage with complete birh date ${ }^{\prime}$			Sex ratio at birth ${ }^{2}$			Calendar ratio ${ }^{3}$			Male			Female		
	L	D	T	L	D	T	L	D	T	L	D	T	L	D	T	L	D	T
90	1602	164	1766	97.6	86.2	96.5	95.2	128.4	97.9	-	-	-	781	92	874	821	72	893
89	1424	198	1622	96.1	84.2	94.7	104.5	144.0	108.6	98.0	108.8	99.2	727	117	844	696	81	778
88	1304	200	1504	93.1	85.7	92.1	91.7	145.3	97.4	96.6	95.5	96.4	624	119	742	680	82	762
87	1276	221	1498	91.1	77.4	89.1	106.6	159.4	113.0	101.8	119.5	104.1	659	136	794	618	85	703
86	1205	170	1375	91.6	71.4	89.1	100.3	90.1	99.0	95.1	62.3	89.3	603	80	684	602	89	691
85	1257	324	1580	80.2	69.3	77.9	93.4	78.6	90.1	107.0	154.8	114.2	607	142	749	650	181	831
84	1144	248	1393	77.8	68.2	76.1	103.0	96.2	101.8	95.9	87.4	94.3	581	122	703	564	127	690
83	1131	245	1375	80.2	63.2	77.2	90.3	129.7	96.2	104.8	113.9	1063	536	138	674	594	106	701
82	1013	181	1194	78.4	63.4	76.1	116.3	126.5	117.8	96.7	82.0	94.1	545	101	646	468	80	548
81	966	196	1162	77.1	58.8	74.0	88.0	110.9	91.5	NA	NA	NA	452	103	555	514	93	607
86-90	6811	953	7764	94.2	81.0	92.5	99.3	133.0	102.9	NA	NA	NA	3394	544	3938	3417	409	3826
81.85	5511	1194	6705	78.8	65.2	76.4	97.5	103.3	98.5	NA	NA	NA	2721	607	3328	2790	587	3377
76-80	4336	916	5253	72.6	54.4	69.4	109.7	106.0	109.0	NA	NA	NA	2268	471	2740	2068	445	2513
71.75	2949	769	3718	68.3	51.2	64.8	104.8	101.5	104.1	NA	NA	NA	1509	387	1896	1440	381	1821
<71	2484	962	3445	60.2	47.6	56.7	101.0	113.1	104.2	NA	NA	NA	1248	510	1758	1236	451	1687
All	22091	4794	26885	78.8	60.5	75.6	101.7	110.8	103.3	NA	NA	NA11	11140	2520	13660	10951	2274	13225

$\mathrm{NA}=\mathrm{Not}$ applicable
${ }^{1}$ Both year and month of birth given
${ }^{2}\left(\mathrm{~B}_{\mathrm{m}} / \mathrm{B}_{f}\right)^{*} 100$, where B_{m} and B_{f} are the numbers of male and female birhs, respectively
${ }^{3}\left[2 \mathrm{~B}_{\mathrm{x}} /\left(\mathrm{B}_{\mathrm{x}-1}+\mathrm{B}_{\mathrm{x}+1}\right)\right]^{* 100}$, where B_{x} is the number of births in calendar year x

Table D. 5 Reporting of age at death in days
Distribution of reported deaths under 1 month of age by age at death in days and the percentage of neonatal deaths reported to occur at ages 0-6 days, for five-year periods of birth preceding the survey, Tanzania 1991/92

Age at death (in days)	Number of years preceding the survey				$\begin{aligned} & \text { Total } \\ & 0-19 \end{aligned}$
	0-4	5-9	10-14	15-19	
<1	49	54	31	25	160
1	69	58	54	27	208
2	26	36	24	21	108
3	32	21	18	9	80
4	14	7	6	3	31
5	7	12	1	4	24
6	5	3	9	1	18
7	42	39	30	26	138
8	0	8	5	2	16
9	0	5	8	2	15
10	0	8	1	5	14
11	1	1	0	0	2
12	1	2	0	1	4
13	1	0	0	1	2
14	30	15	15	10	69
15	1	4	3	1	8
16	0	0	2	0	2
18	0	1	3	0	4
19	0	1	1	2	3
20	3	1	1	1	6
21	10	7	5	2	24
23	0	1	0	1	2
24	1	0	0	1	1
25	0	0	1	1	2
26	1	0	0	0	1
27	0	0	1	0	1
28	5	7	4	2	18
29	1	1	1	0	4
30	9	23	5	4	41
31+	4	5	4	1	14
Missing	0	0	0	2	2
\% early neonatal ${ }^{1}$	65.6	60.4	62.5	59.3	62.3
Total 0-30	309	317	229	154	1009

${ }^{1}(0-6$ days $/ 0-30$ days $) * 100$

Table D. 6 Reporting of age at death in months

Distribution of reported deaths under 2 years of age by age at death in months and the percentage of infant deaths reported to occur at ages under one month, for five-year periods of birth preceding the survey, Tanzania 1991/92

Age at death (in months)	Number of years preceding the survey				$\begin{aligned} & \text { Total } \\ & 0-19 \end{aligned}$
	0-4	5-9	10-14	15-19	
$<1^{\text {a }}$	309	317	229	155	1011
1	43	47	29	19	139
2	41	43	39	32	156
3	43	65	48	34	191
4	39	28	20	11	98
5	24	41	17	20	101
6	40	59	26	47	171
7	40	38	36	15	130
8	28	29	22	20	98
9	48	44	22	18	131
10	12	16	12	7	47
11	19	16	16	10	61
12	22	37	25	46	130
13	12	21	10	5	48
14	11	6	10	7	34
15	10	10	14	6	41
16	3	3	6	7	19
17	2	4	3	7	17
18	14	35	40	30	120
19	3	1	0	0	5
20	3	2	3	1	9
21	2	1	1	2	6
22	1	4	0	0	5
23	2	1	3	1	7
24+	6	20	10	6	42
1 year	14	21	35	23	92
Total 0-11	687	742	516	389	2333
Percent nconatal ${ }^{\text {b }}$	45.1	42.7	44.4	40.0	43.3

${ }^{\text {a }}$ Includes deaths under 1 month reported in days
${ }^{\mathrm{b}}$ (Under 1 month/under 1 year) * 100

APPENDIX E

QUESTIONNAIRES

HOUSEHOLD SCHEDULE: Now mould like some information about the people who usually live in your household or who are ateylng with you now.

* cooes for 0. 3 relatiowship to head of mousemold:

01- MEND	05- cranderitio	ope other melative	00- Less than	1 year completed		
$02=$ VIFE OR MUSBAND	OS P PARENT	10- ADOPTED/FOSTER CHILD	01- StAMdardi	05- Stambaros	$00=80 \mathrm{Rm} 1$	13- FORMS
03- SOM OR DALGMTER	07- PAREMT-IM-LAN	11- mot related	02- stamoardz	O6- stamoaros	10- FORM2	14. Forms
OS- SOM On DaUGHTER-IM-LAW	Os- gminter or sister	980 DK	05= Stamdardj	07- itandarot	11- FORK3	15- Luiversity
			OS. STAMDARDG	06- Stamoaros	12. Fomm	98e cont kwou

m.	WESTIOMS AD FILTERS	cooimg cateconies $\quad 1$sxit to
17	What is the source of water your hosechold uset for handeathing and dishuathing?	PIPED IUTO MOUSE/YARD/PLOT PURLIG TAP.......................... 12 VELL IM RESIDEMCE/YARD/PLOT.... $21 \xrightarrow{\text { 18 }} 18$ PLRLIC LELL........................... 22 SpR1MG................................. 31 RIVER/STREM......................... 32 PONO/LAKE . 33 DAN. \qquad RAIM MATER. \qquad $\xrightarrow[41]{ } 18$ thaker truck. OTHER \qquad 71
18	How long does it toke to os there, get weter, and come beck?	MIMUTES \qquad \square PREMISES \qquad
19	Does your household get drinking weter from this same source?	
20	What is the source of drinking water for members of your householon	
21	How long does it tuke to go there, get water, and come back?	MINUTES \qquad \square PREMISES \qquad
22	What kind of toilet facility does your houschold have?	am flusk tollet................... 11 Shared flush tollet............... 12 TRNDITIOMAL PIT TOILET.......... 21 VENTILATED PIT LATRIKE.......... 22 WO FACILITY/8USH/FIELD............ 31
	Does your housthold have: Electricity A redio? A television? A refrigerstor?	
26	How menty roome in your household are used for aleeping?	R00мs.....................
25	mAIM MATERIAL OF TME flocr.	EARTM/SND............................ It 4000 PLANKS........................... 21 Parcuet or Polished wo00........ 31 CERNAIC TILES........................ 32 CEMEMT OTHER \qquad (SPECIFY)
	Dowe ary menber of your household ome: A bievcle? A motorcycle? A car?	

UNITED REPUBLIC OF TANZANIA
BUREAU OF STATISTICS PLANNING COMAISSION TANZANIA DEMOGRAPHIC AND HEALTH SURVEY

INDIVIDUAL QUESTIONNAIRE FEMALE

mo.	OUSSTIONS ADO FILTERS	
111	Do you mually listen to a radio at least ance a mosk	ris................................ 1
112	Do you usually watch television at least once e wath	YEs................................ 1
113	What it your rellgion?	
116	To which tribe do you belong? if mot a tamzanian citizen, record comthy Of CITIZENSHIP.	
115	Checx 0.5 IM The householo schedule: the respomoekt is mot a usual residemt of the hn \square \square	
	Yow I would like to ask about the place in which you usually live. Do you valully live in Dar of salam city, mothar urben area, or in the rupal orea? If otmer urbay area: In wich tom do you live?*	
117	In wich ragion is that located? if usual residemee is outside of tamzania, RECORD COUMTRY OF RESIDENCE.	2 EcIOM
	Mow 1 would like to ask you about the houshoid in which you usully live? that is the scurce of weter your howsehold uses for handwashing and dishwashing?	
119	How long does it take to go shere, get meter. and come beck?	MIMUTES. \qquad \square PREMISES \qquad 99
120	Does your household get drinking water from this same source?	

[^15]| mo. | OESTIONS AD FILTERS | Cooimg cateconies | sxip_{10} |
| :---: | :---: | :---: | :---: |
| 121 | What is the source of drinking water for mbers of your mouncholdof | PIPED ImTO mase/TAND/PLOT. 11 PRIIC TAP........................... 12 WELL IM LESIDEMCE/YARD/PLOT.....24-
 SPRIMG. 31 RIVER/STREM......................... 32 POWO/LAKE. \qquad DAK. \qquad
 tamker trucx.......................... 51 OTHER \qquad 7
 (SPECIFY) | $\rightarrow 123$ $\rightarrow 123$
 $\rightarrow 123$ |
| 122 | Now lons does it take to go there, get weter, and cone beck? | MIMUTES. \qquad \square
 OM PREMISES \qquad | |
| | What kind of toilet facillty does your houschold heve7 | am flush toilet................... 11
 SMARED FLUSH TOITET............... 12
 TRADITIOWAL PIT TOILET........... 29
 VEMTiLATED PIT LATRIME........... 22
 WO FACILITY/BUSH/FIELD............ 31 | |
| | Does your household have:
 Electicity
 A redio?
 A television?
 A refrigerator? | | |
| | How many roome in your howsehold art usad for slreping? | n00\%s..................... \square | |
| 126 | Could you describe the min meterial of the floor of your home? | EARTH/SAMO. 5000 PLAMKS.
 PAROUET OR POISHED WOOD........... CERANIC TILES........................ 32 CEMEMT OTHER \qquad (SPEE!FY) | |
| | Does any menber of your household ant:
 A biercle?
 A motercycle?
 A car? | | |

211 Wow 1 mould like to talk to you about alt of your births, thethor still ilive or not, starting with the first

212 that neme wes given to your (first,next) beor?	213 RECORO SIMGLE 08 Wutiple BITM status	214 is (MANE) - boy or - girl?	215 In wat month and year wes (HAWE) born? PROBE: What is his/ har birthday? OR: in what season was he/the born?	216 Is (MANE) etill alive?	217 if alive: How old wes (HANE) at his/her last birthday aECORD ace IM COMPLETED YEARS	218 If alive: 1s (MANE) living with you?	219 if less tuan 15 res. of AGE: With ham does he/the live? If 15*: © TO MEXT BIRTH	220 If DEAO: How old mas he/tie then he/the died IF "I Th.", PROKK: How mery monthe old was (MANE)? RECORD DAYS IF LESS THAN I MOWTH, MOETES If Less than two YEARS, CR YEARS.
01	sing... muti... 2	SOY... 1	MOWTM..\square YEAR...	TES... 1 ω	ACE IK TEARS			DAYS.... 1 MOWTMS. 2 TEARS.... 3
$02]$ (MANE)	$\begin{aligned} & \text { SIMG. . . } 1 \\ & \text { mult... } 2 \end{aligned}$	80Y... 1 GIRL. . 2	mowith. . YEAR... \square		AGE IM YEARS		$\begin{aligned} & \text { FATHER......... } \\ & \text { OTHER } \\ & \text { RELATIVE...2_- } \\ & \text { SOMEOWE ELSE.3-1 } \\ & \text { (CO NEXT GIRTM) } \end{aligned}$	oars.... 1 MOWTHE. 2 TEARS... 3
031 (MAKE)	$\begin{aligned} & \text { sING... } 1 \\ & \text { MULT... } 2 \end{aligned}$	$\begin{aligned} & \text { B0Y... } 1 \\ & \text { GIRL. . } 2 \end{aligned}$	\square		ACE IM YEARS		$\begin{aligned} & \text { FATMER......... } \\ & \text { OTMER } \\ & \text { RELATIVE....2- } \\ & \text { SOMEONE ELSE.3-3 } \\ & \text { (CO MEXT BIRTH) } \end{aligned}$ (CO MEXT BIRTH)	DAYS..... 1 MOLTHS.. 2 YEAR5... 3
ω (MNE)	$\begin{aligned} & \text { sIMG... } 1 \\ & \text { mutt... } 2 \end{aligned}$	$\begin{aligned} & \text { BOT... } 1 \\ & \text { GIRL.. } 2 \end{aligned}$			ACE II YEARS		father.........17 OTHER relative...2SOMEOWE ELSE.3-1 (GO mext 8IRTh)	DaYs.... 1 months. . 2 YEARS... 3 \square
$\frac{05}{05}$	$\begin{aligned} & \text { SIMG... } 1 \\ & \text { mutt... } 2 \end{aligned}$	$\begin{aligned} & \text { BOY... } 1 \\ & \text { GIRL. . } 2 \end{aligned}$	MOWTH. . YEAR... \square		ACE IK YEARS		fathen........i? OTKER RELATIVE...2SCMEOWE ELSE.3-H (GO MEXI BIRTM)	Dars.... 1 MOWTKS. . 2 TEARS... 3
$\frac{\text { - }}{\text { (NNE) }}$	$\begin{aligned} & \text { SIMG... } 1 \\ & \text { MLT... } 2 \end{aligned}$	$\begin{aligned} & \text { B07... } 1 \\ & \text { GIRL. . } 2 \end{aligned}$	MONTK. . YEAR... \square		ACE In YEARS	$\begin{gathered} \text { TES....... } \\ \text { (co ro MEXT } \\ \text { BIRTH) } \\ \text { wo....... } \end{gathered}$	FATMER........! OTHER RELATIVE...2SOMEONE ELSE.3-H (GO MEXT BIRTM)	Dars.... 1 моштяs. . 2 YEARS... 3
$\frac{07}{\text { (MANE) }}$	stmg... 1 MULT... 2	$\begin{aligned} & \text { BOY... } 1 \\ & \text { GIRL.. } 2 \end{aligned}$	MOWTM. . YEAR... \square		ACE IM YEARS		father........ ${ }^{\text {I }}$ OTHER RElative...2SOMEONE ELSE.3-H (CO WEXT BIRTK)	DAYS.... 1 montins. . 2 YEARS... 3

212 What neme mas given to your (tirst, next) beloy	213 EECORD SIMGLE OR multiple BIRTM status	214 18 (WNE) - boy or - girli	215 In what month and year mas (HNE) born7 proge: that la his/ her birthday oaf: In that season was he/she born?	216 ts (MNE) stll elive?	217 If MIVE: MOW old mes (MNE) at his/her lest birthday? RECORD AGE IN COMPLETED YEARS	218 if alive: Is (WNE) livine with you?	219 IF Less tral 15 YRS. OF AGE: With wha dowe he/ahe live? 1F 15+: ∞ To MEXI BIRTM	220 1F DEAD: How old wae he/she then he/ahe diedt 17 -1 YR.a. mone: Wow mery monthe old was (MWE)? eecord pays if less THAN I MOWTK, MONTIS IF less than two YEARS, CR YEARS.
(MAME)	SIMG... 1 melt.. .2	BOY... 1 GIRL. 2	MONTM.. YEAR,...	TES...1	act III YEARS			DAYS.... 1 mowith. . 2 YEARS... 3
09 (NOKE)	SIMG... ${ }^{\text {melt... }}$	BOY... 4	MOWTM..	YES...1	ACE IM YEAKS	YES....... (COTO TO MEXT BIRTH)	FATMER........1-1 OTMER RELATIVE...2- SONEOME ELSE.3- (CO HEXT BIETH)	DAYS.... 1 MOMTHS.. 2 reARS... 3
	SIMG... 1 milt... 2	BOY... 1	MOMTH..		AGE III YEARS		FATHER........1 OTHER RELATIVE...2- SCWEOE ELSE.3- (CO MEXT BIRTH)	DAYS.... 1 maviths. . 2 YERRS... 3
11] (MAME)	$\begin{aligned} & \text { stMg... } 1 \\ & \text { mert... } 2 \end{aligned}$	B0Y... 1 GIRL. 2	MOWTM. . \quad YEAR...		ACE IM YEARS	$\left.\begin{array}{l}\text { YES } \ldots \ldots . . .1 \\ \text { (co TO MEXT } \\ \text { BIRTK) }\end{array}\right]$		DAYS.... 1 months. . 2 YEARS... 3
12 (MANE)	$\begin{aligned} & \text { simg... } 1 \\ & \text { mult... } 2 \end{aligned}$	B0Y... 1 GIRL. 2	MONTM.. \square		ACE IM rears			DAYS.... 1 mawiths. 2 YERS... 3
COMPARE 208 WITH Yumge Of BIRTMS IM MISICRY A8OVE AN MaK: mmages ane OIFFEREMT \square (PRCBE AMD RECONCILE) CRECK: FOR EACK LIVE ETRTM: YEAR OF BIRTM IS RECORDED for each livimg enild: curremt ace is aecomod FOA EACH DEAD EMILD: AGE AT DEATM IS RECORDED FOR ACE AT DEATH 12 mowths: proge TO DETERMIME EXACT MLNBER OF mOwths								
$222 \|$CHE CX IF WC	215 AMD E, EMTER	ER the	mber of girths	ice jamuar	1086			

$\underline{0 .}$	CNESTIOUS ND FILTERS	
223	Are you pregent nown	
224	How meny months pregnent are roun	понтня. \square
225	At the time you become pregnent, did you ment to become prepnent then, did you ment to mait until later, or did you not went to becoee pregnent ot all?	
226	How long ago did your last menatrual period atert7	DAYS ACO \qquad seEXS Aco. \qquad mowths aco \qquad YEARS ACO. \qquad \square 14 MEMOPMUSE. \qquad 994 gEFORE LAST BIRTM. \qquad 995 MEVER MEMSTRUATED \qquad
227	Between the firat day of acmen's period and the first day of her next period, ore there cartain times when she has a greater chancs of beconing prepnant then other tiess?	
228	During which times of the monthly cycle doet a women have the greatest chance of becoming pregrent?	DURIMG MER PERICO.................... 1 plght after her perico HAS ELDED............................ 2 III THE MIDOLE OF THE CYCLE...... 3 just before her perion begims... 4 OTMER \qquad (SPECIFT) DK. \qquad

301 How 1 would like to talk obout fatily plaming. the varlowe waye or methode that a caple can uete to delay or avoid a pregnency. Which maye or minode have you heard bout?

CIRCLE CCOE 1 II 302 FO EACH METHOD MEMTIONED SPCOTAMEOUSLY.
then proceed oom the coulm, readimg the whe no description of each methoo mot memtioneo spowthacusty. CIRCLE CCOE 2 IF METHCO IS RECOGNIZED, ND CODE 3 IF MOT RECOCNIZED.
THEM, FOR EACH METHOD UITH COOE I OR 2 CIRCLED IN 302, ASK 303-306 EEFORE PROCEEDIMG TO THE MEXT METHCO.

		302 have you evar heard of (NETMCD)? READ OESCRIPTIO OF EACH METMCO.	303 Have you ever used (METHOD)?	306 Do you know there - perion could 90 to get (${ }^{(1) T H O}$)?
01.	PILL Vomen can take a pill every doy.	$\begin{aligned} & \text { YES/SPOWT . }{ }^{2} \\ & \text { YES/PRCOBED . }{ }^{3} \\ & \text { mo. . . } \end{aligned}$	YES................... wo..................... 2	YES. \qquad .1 10. \qquad
02	luD tomen can have a loop or coil placed inside then by a doctor or a murse.	$\begin{aligned} & \text { YES/SPOWT }{ }^{1} \\ & \text { YES/PRORED . } \end{aligned}$	$\begin{aligned} & \text { Yes.................... } 1 \\ & \text { wo..................... } 2 \end{aligned}$	
03	Injectiows vomen can have an injection by a dector or nurse which stops the from beconing prepment for several months.	YES/SpROT......................... 1 YES/PROBED. 2 *0,	$\begin{aligned} & \text { res................... } 1 \\ & \text { wo..................... } 2 \end{aligned}$	res.................................
0	DIAPHRAGM,FOAM, JELLY WOREN cm place a sponge, suppository, diaphragn, jelly or crean inside the before intercourse.	Yes/spowt. 1 YE5/PROBED........................ 2 $\%$ \% \qquad	$\begin{aligned} & \text { yEs.................... } 1 \\ & \text { no..................... } 2 \end{aligned}$	res.................................
05	Coworn Men cen vie a rubber sheath during sexual intercourse to avoid pregnancy. The rubber sheath is also used to prevent transaission of disesces auch os AlDS and for cleanliness.		$\begin{aligned} & \text { res.................... } 1 \\ & \text { no...................... } 2 \end{aligned}$	$\begin{gathered} \text { res. } 1 \\ \text { w. } 2 \end{gathered}$
06	fevale sierilizatiow homen con have on operation to ivoid having any more childrem.		Have you ever had an operstion to avoid having any more children? YES. \qquad ${ }^{2}$ о. \qquad	res..................................
07	mue sierilization men can have on operation to avold having ary more children.		$\begin{aligned} & \text { res.................... } 1 \\ & \text { no..................... } 2 \end{aligned}$	res.. 2
08	Callmoak Couples can have cerval intercourse only during the safe period of the monthly cycle, that is the times during the monthly cycle when the woman is least likely to became pregnent.		$\begin{aligned} & \text { res.................... } 1 \\ & w 0 \end{aligned}$	Do you know where a perzon cen obtain atrice on how to we the calender methodr YES. \qquad 10. \qquad
09	MuCUS METMCD A women con obeerve doily the state of the mucus and avoid zexual intercourse at the time then the mucus is cotorless and extremely elastic.		$\begin{aligned} & \text { res.................. } 1 \\ & \text { wo.................... } 2 \end{aligned}$	Do you know where a perion can obtain advice on how to observe changes in the mucues TES. \qquad 10. \qquad
10	witmoralal men can be careful and pull out before climax.		$\begin{aligned} & \text { res.................... } \\ & \text { no..................... } \end{aligned}$	

	CUESTICNS ND FILTERS	
306	Have you ever used mything or tried in my my to delay or avoid getting pregnent?	
307	What have you used or done? CORRECT $303-305$ (AND 302 If WECESSARY).	
308	When you first did something or used a method to avoid getting pregnent, how meny livire children did you have at that time? If MONE RECORD '00'.	Muser of Children.........
309	CMECK 223: mot PREGMATIT PRECOATI or unsure	
310	CHECK 303: VCMAN mot yown STERILIZED sterilized	$\frac{1}{1} \times 3120$
311	Are you currently doing samething or wing any method to delay or avold getting pregnent?	
	Which method are you using?	
312A	CIRCLE 'O6' for female sterilization.	FEMALE STERILIZATIOM.............. MaLE STERILIZAJIOM.....................07. CALEMDAR. . maly metmod \qquad WITIDRALAL. OTMER \qquad (SPECIFY)

mo.	QESTIONS AD FILTEAS	
313	At the tim you first started wing the pill, did you consult a doctor or arra?	res..................................... 1 M \qquad DK. \qquad . 8
316	At the time you last got pille, did you consult a doctor or © nurse?	$\begin{aligned} & \text { res.. } 1 \\ & \text { m.. } 2 \end{aligned}$
315	Way : see the pack of pltte you are wing now (RECORD wite OF ERANO.)	PACX SEER. \qquad . .1 \square \square 2317 RRAD MWE \qquad PACX MOT SEEN. \qquad
316	What is the brand name of the pilts you are now using? (RECORD YNE OF GRAMD.)	BRUD MNE
317	Now much does one pack of pills cost your	$\cos \mathrm{r}$ \qquad \square FREE \qquad
318	CHECK 312: She/he sterilized usimg amother meinco Where did the ther did you obtain aterilization taka (METHOD) the last time? plect?	COVERHEMT AMD PARASTATAL COwsultant hospital............. 19 REG:CNAL MOSPITAL................ 12 DISYRICI HOSPITAL................ 13 MEATH CEMTRE. 16 DISPERSARY. 15 pafastatal healith facility.... 16 VILLACE HEALTH POST/NCAKER.... $17 \longrightarrow 32$ medical prjvate sector RELIGIOUS ORG. FACILITY........ 21 PRIV. DOCIOR/CLIMIC/MOSPITAL. . 22 PHARMCY/MEDICAL STORE......... 23 unati cro vorker.. DTMEI PRIVATE SECTOR SHCP. \qquad ME IGHBCRS/RELATIVE 5 31 OTMER \qquad 61 (SPECIFY) DK. 98 \square
319	Mou lona does it take to travel from your hane to this place? If Less that two moves, recond travel time in minutes. DTHERUISK, RECDRD TRAVEL IIME IM HOURS.	Mimites. nons. \qquad DK. \qquad 9998
	Is lt easy or difficult to get thers?	EAST............................. ${ }^{1}$

w\%.	CESTIOMS AD FILTERS	cootma cateconies $\sin ^{5 \times 10}$
321	CHECI 312:	$\longrightarrow 323$
322	in what month and year was the sterilization operstion performed?	DATE MONTM. \qquad
323	For how many monthe have you been using (CWREMT METHCD) continnously? if less than ane mowth, recond י00'.	mowths. \qquad \square
326	Do you intend to usa a method to delay or avold pregnency at ary tim in the future?	
325	What it the min reason you do not intend to uese - methoor	
326	Do you lintend to we e method within the next 12 eonthe?	
327	When you use t method, wich method would you prefer to uase?	

mo.	QuESTIOMS ND FILTERS	cooimg cateconies \quad EKIP
328	Where em you get (WETHCD RENTIOMED IU 327)? (WWE of PLACE)	COVERUMEXT AD PRCASTATAL COMSNLTAMT WOSPITAL............. II REGIOWAL MOSPITAL.................. 12 DISTRICT MOSPITAL................ 13 healith cemtre...................... 16 DISPENSART......................... 15 parastatal healtm facility.... 16 medical private secio RELIGIOUS ORG. FACILITY........ 21 PRIV. DOCTOA/CLIMIC/MOSPITAL.. 22 PYARMCY/NEDICM STORE........ 23 UNATI CBO WORXER.................. 26 OTMER PRIVATE SECTOR SHOP. \qquad MEIGHBORS/RELATIVES \qquad 61 >336 OTHER \qquad \qquad 3 (SPECIFY) OOW'T KMOU. 98 . \qquad
329	CHECK 312: using calender, mucus methoo vithorahal of other traditioual. USIKG A MODERM \square NETHOD	$\left.\right\|_{1} ^{\rightarrow 336}$
330	Do you know of a place where you can obtain - method of fatily plaming?	
331	Wher is that? (NAME OF PLACE)	COVERNMEMT ANO PARASTATAL COMSULTAMT HOSPITAL............. IS REGIONAL MOSPITAL................ 12 REGIONAL HOSPITAL................ 12 DISTRICT HOSPITAL................ 13 health Cemtre..................... 16 DISPEMSARY......................... 15 parastatal heabth facility.... 16 VILLAGE KEALTH POST/MORIER....17—3 $\longrightarrow 36$ meDICAL PRIVATE sector RELIGIOUS ORG. facILITY........ 21 PRIV. DOCTCR/CLIMIC/MOSPITAL.. 22 PHARMCY/MEDICAL STCRE......... 23 LMATI CSO worker.................... $26 \longrightarrow 33$ OTMER PRIVATE SECTOR SHOP. \qquad metchbors/relatives. 31 OTHER \qquad 45
332	How long does it take to travel from your hom to thile place? If LeSS than two moves, aecond thavel time in minutes. OTHERUISE, RECCOD TRAVEL TIUE IM MOVAS.	MIMUTES \qquad HOVRS \qquad \square OK. \qquad
	ts it easy or difficute to get there?	EASY............................... 1
	In the last month, have you heard or sem a mestage sbout fasily pleming on the radior on television? from MCM aide? from neighbors/ralatives? on posters?	
	la it acceptable or not acceptable to you for fanily plaming information to be provided on the radio or television?	

		WNE LAST BIRTM	WVE WEXT-T0-LAST Otelm	WNE ECOMO-FECN-UST BIRTI \qquad
	When you were pregrunt -ith (INE) were you givm on injection in the ore to prevent the baby from getting tetenus, that is, convulaions ofter birth?			
	How many times did you get thic injection?	$\left\|\begin{array}{l}\text { rimes.................. } \square^{\square} \\ \text { or..................... }\end{array}\right\|$		THES................. $\square_{\square}^{\square}$
413	Where did yougive birth to (KANE)?	HONE YOUR HONE.................. 11 OTHER NOW. 12 GOVERNEMT AND PARASTATAL MOSPITAL................... 21 health centre............. 22 DISPENSARY.................. 23 parastatal mosp/CLIMIC. 26 private sectom RELIGIOUS ORG MOSP/CLIM. 31 PRIVATE HOSPITAL/CLIMIC. 32 OTMER \qquad 41 (SPECIFY)	WOVE ran mane................... 11 OTHER HOME. 12 GOVERDEEMT AND PARASTATAL MOSPITAL 21 HEALTK CEMTRE. 22 DISPENSARY. 23 PARASTATAL MOSP/CLIMIC. 26 PRIVATE SECTOR RELIGIOUS ORG MOSP/CLIM. 31 paivate hospital/climic. 32 OTHER \qquad (SPEC1FY)	HOWE YaR HOE................... 11 OTHER HOW................... 12 GOVERMENT NO PARASTATAL HOSPITAL.................... 21 HEALTH CEMTRE. 22 DISPEMSARY................... 23 PARASTATAL HOSP/CLIMIC.. 26 private sector RELIGIOUS CRG MOSP/CLIM. 31 PRIVATE MOSPITAL/CLIMIC. 32 OTHEE \qquad 41 (SPECIFY)
414	Who assisted with the delivery of (HAME)? Artone else? RECORD ALL PERSONS ASSISTIMG.	health professiomal DOCTOR/MEDICAL ASST......A RURAL MEDICAL ALDE........ WURSE/MIDUIFE............... C MCH AIDE..................... D OTHER PERSOM VILLAGE HEALIH YORXER....E tralmed birth attempant..f TKADITIONAL BIRTM ATTEMDAMT.................. 6 ME IGKBORS/RELATIVES.......M OTHER \qquad (SPECIFY) NO OWE \qquad	HEALTK PROFESSIOMAL DOCTOR/MEDICAL ASST.......A RURAL MEDICAL AIDE........ B MRSE/MIDVIFE................ C men Aide...................... . OTMER PERSOM VILLAGE health horker.....E TRAIMED OIRTM ATTEMDAMT.. F tragitional sirth attenoant. G he igheors/relatives....... OTMER \qquad (SPECIFY) WO Cus \qquad	HEALTM PROFESSICMAL DOCTOR/MEDICAL ASST.......A RLDAL MEDICAL AIDE........I MUSSE/MIDWIFE. C MCH AIDE...................... OTMER PERSCO VILLAGE REATIK GORKER....E traimed birth attembait..f TRAOITIOMS 9IRTM ATTEMDALT................... 6 ME IGHBORS/RELATIVES.......I OTHER \qquad (SPECIFY) Mo OME. \qquad
	Lus (WNE) born on tien or premeurely?			
	Was (WNE) delivired by coeserian section?	res........................ ${ }^{1}$	Yes......................... 1	Yes......................... 1
	When (HANE) was born, wes hefshe: very large, largar than average, overegn, malter than averaga, or very salli?		VERY LARGE................... LARGER THAM AVERAGE...... 2 AVERAGE 3 SMALLER THAN AVERAGE..... 4 VERY SKAL6................... 5 or................................	YERY LARGE................... 1 LnGEER TMNI AVERAGE...... 2 average. ${ }^{3}$ SMALER TMM AVERAGE..... 4 VERY SMALL................... 5 DK,.............................. 8
	Has (MWE) weighed at birth?			
	You much did (MAME) migh? RECORD FRON MCN CARD IF avaitable.	KILOGRANS \qquad \square \square DK. \qquad 998	KILOCRANS..... \square \square DK. \qquad 998	KILOGRAMS. \qquad \square \square DK, \qquad .996

		WNE LAST DIRTM	WAE MEXT-TO-LAST AIRTM	secono-ficn-last BletM whe \qquad
	CWECX 216: CHILO ALIVE?			
	Hos (MAME) ever given any water, or something else so drink or oat (other than breastmilk)?		TES. \qquad w. \qquad (SKIP TO 444)	TES. \qquad wo. \qquad (SXI) 10 44) \qquad
439	Now mamy months old ves (HNE) when you started giving the following on a regular betis?: Formula or milk other then breastmilk? Pisin mater? Other llquids? Any solid or mashy food? If less than one mowth, RECOEO '00'.	AGE IH MOMTHS. \qquad \square wot given. \qquad AGE IK NOWTHS. \qquad \square not given \qquad AGE IN MOWTHS \qquad \square not given \qquad AGE IN MOWTKS. \qquad \square WOT GIVEN \qquad	NCE IN MOMTHS \square mot givem. \qquad ACE IE MOMTHS \qquad \square Wot given \qquad ACE IIM MONTHS. \qquad \square mot given \qquad AGE IL MOWTHS. \qquad \square WOt given \qquad	AGE 14 MOMTMS........ \square wot given \qquad AGE IN MOWTISS. \qquad \square HOT GIVEN. \qquad AGE IN MOWTHS \qquad \square MOT GIVEN. \qquad AGE IM MOWTKS \qquad \square mot Givem. \qquad
40	CMECX 216: CHILD ALIVE?	ALIVE DEAD (SKIP to 444)	ALIVE \square DEAD (SKIP 10 444)	
	Mow meny mala did (HaNE) eat yeeterder	MUBER of Meals........ \square^{\square}	manct of meals........ \square DK. \qquad	
442	Did (MNE) eat any other food such at ground nuts, sweet benenas, burs or other things or drink any sode yeaterdey		res. \qquad .1 10. \qquad DK. \qquad	
	Did (Nawe) drink arything fram botite with a nipple yeaterday or last night?	res................... ${ }^{1} \mid$	(enden	,
464 Co BACE TO 603 FOR MEXT GIRTM; OR, IF WO MORE BIRTMS, SXIP TO 445.				

 USE ADOITIOMAL FORMS).

LIME megen FRON 0.212										
	$\begin{aligned} & \text { FROM } 0.212 \\ & \text { AND } 0.216 \end{aligned}$		T PIRTM							
	Do you have a card where (Kake's) vaccinationa are written dow? IF YES: May t see it, please?							YES, sEEN.................... (3xIP 10 448) YES, wot seen.............. 2 (SKIP TO 650) MO CARD. \qquad		
	ofd you ever have a veccination card for (WAWE)?									
448	(1) Copy vaccimation dates for each vaccime fron THE CARD. (2) valte 'Hh' IM 'DAY' COLUMK, If CARD SHOWS that a vaccinailicm MAS GIVEM, BUT WO DATE RECOROED. BCL DPT 1 OPT 2 DPT 3 POLIO: POL 102 PO: 103 measles				YEs............................11 proee for vaccimailiows AND WRITE '66' II THE CORRESPONDIMG DAY cocum in 448 mo. \qquad or. (SKIP 10 452) < \qquad			YES. prose for vaccimatious NDO LRITE '66' IN THE CORRESPOWDIMG DAY COLUNI IN 468 wo. \qquad DR. (SK1P 10 652)e \qquad		
46	Mes (XANE) received why veccinations thet are not recorded on this card RECORD 'YES' OWLY JF RESPOWDEWT MEWTICWS ICG, DPT. POLIO AMD/OR deasles vactimatiows.									
	Did (WAME) ever receive wry vacciritions to prevent himher from getting diseaset?									

		wate Last Bleth	WNE EEXT-TO-LAST BIRTM	secmorron-last birty W期 \qquad
451	Ploase toll mif (WNE) (has) recelved any of the following veccinations:			
	A BCE vaccination againet tuberculosia, that is, m injection in the right shoulder that left a scar?			
	Pollo veccine, that is, drope in the mouth?			
	IF YES: How ary times?	NUMBER OF TIMES \qquad \square	MMEER OF TIMES \qquad \square	MUMBER of times........
	An injection squinat measles?			
	Was (MNWE) ever ill with meashel	YعS...................... 1	res. \qquad 10. \qquad	Yes....................... 1 wo....................... 2
	Checr 216: CHSLO AlIVE	$\begin{aligned} & \text { ALIVE } \square_{V} \text { OEAD } \\ & \text { (SKIP TO } 455 \text {) } \end{aligned}$	$\begin{aligned} & \text { ALIVE } \square_{V} \text { DEAD } \\ & (S X I P ~ T O ~ 655) \end{aligned}$	

		LuE LAST BIRTM	WNE WEXT-TO-LAST BIRTM	gECOTO-FRON-LAST BIRTM 4nt \qquad
	Kas (caut) been 1111 with tever at ery time in the last 2 weeks?	res...................... 1 wo................. 21 DK.................... 8		
456	Was (WNGE) been ill with - cough ot any time in the last 2 weeks?			
	Has (wet been ill with a cough ot any time in the last 26 hours?	YES...................... 1 wo.................... 2 DR.................. 8	YES...................... ${ }^{1}$ no...................... 2 DK.................	
		DaYs............... \square	DaYs. \qquad \square	DAYS. \qquad \square
	then (WME) had the II lness with cough, did he/she breathe faster then usual with short, rapid breaths?	YES. \qquad 100. \qquad DK. \qquad	YES. \qquad mo. \qquad Dr. \qquad	YES. \qquad 1 mo. \qquad DK. \qquad
	(CHECI 455 AND 456:			
	Les mything given to treat the fover/cough?			
	What was given to treat the fever/cought Amything else? recomo all treaiments Meytioneo.	INJECTIOW.....................A AMIEIOTIC (PILL OR SYRUP).......... 8 amtimlarial. (PILL OR SYRLP)...........C COUGH SYRUP................ OTHER PILL OR SYRUP......E LHKWON PILL OR SYRUP....F HOWE REMEDY/ herbal medicime. \qquad OTHER \qquad .6 (SPECIFY)	INJECIIOM....................... AMTIEIOTIC (PILL OR SYRUP) \qquad AHTIMALARIAL (PILL OR SYRUP). C COUGK SYRUP.................. D OTHER PILL OR SYRLP.......E UNKNOM PILL OR SYRUP....F HOME REMEDY/ NERBAL WEDICIME. \qquad OTMER \qquad H (SPECIFY)	IKJECTION. A AMTIBIOTIC (PILL OR SYRLP) \qquad AMTINLLARIAL (PILL DR SYRUP)........... C COUGH SYRUP................. OTHER PILL OR SYRUP.......E Lngwan PILL on syexp....F MCNE RENEDY/ herbal medicime OTHER \qquad (SPECIFY)
	Did you seek avice or treatgent for the fower/cought			
	Frow whom or where did you seek advice or treatment? Anyone else? CIRCLE ALL PERSOWS SEEM AMO places visiteo.			

		\qquad WE	WE MEXT-TO-LAST HIRTM	gecomorron-Last siath we \qquad
465	Has (WNE) had diarrhee (three or more watery stools) in the lest two meeke?			
466 \| CO BACX TO 466 FOR WEXT BIRTH; OR, IF WO MORE EIRTMS, SXIP TO 485.				
467	Nas (WNE) had diarrhea (three or more watery stools) in the last 26 hours?	res...................... ${ }^{1}$ wo.................... 2 dr.................. 8		res.................... 1 0.................... 2 br.................. 8 .
	How long has the diarrhen lasted/did the diarries last? if less than 1 day, recond '00.	Dars................ \square	DAYS \qquad \square	orys............. \square
469	Yas there ory blood in the stools?	res...................... mo.................. ${ }^{2}$ dr...................		
470	CHECX C2S: LAST CHILD STILL BREASTFED?	\square (SKIP TO 473)		and
	Did you increase the number of feeds or reduce then, or did you stop completely	IMCREASED................ REDUCED............... STOPPED COMLETELY...... 3		
474	Was arything given to treat the diarrhees			
475	What wes given to treat the diarrhes? Anything else? recosd all treatments MENTIONED.	FLUID FRCM das PACKET.....A RECOMEMDED WOME FLUID*... AMTIBIOTIC PILL OR SYRLP....................... C OTHER PILL OR SYRUP.......D injection. DRIP. \qquad \qquad HOWE REMEDIES/ hergal medicines......... G OTMER \qquad . (SPECIFY)	fluid fron ons pactet.....A RECOWEMDED HONE FLUID*...B AKTIBIOTIC PILL OR SYRLP....................... 6 OTHER PILL OR SYRUP...... 0 IWJECTIOW.....................E DRIP. hCME REMEDIES/ herbal medicines.........g CTHER \qquad H (SPECIFY)	FLUIO FRGM OAS PACKET....A RECOMENOED HONE FLUID*.. B AKTIBIOIIC PILL 0 d sytup....................... 6 OTHER PILL OR SYRUP......D IWJECTIOW. \qquad DRIP. \qquad HOME REMEDIES/ hergal medicimes. \qquad OTKER \qquad (SPECIFY)

[^16]| | | WEE USI BiRTM | \qquad | second-inon-ust ilrth We \qquad |
| :---: | :---: | :---: | :---: | :---: |
| 476 | Did you seek advice or treerment for the diarthes? | $\left\|\begin{array}{r} \text { YEs.............................. } \\ \text { w. } 2 \\ \text { (sxip } 10 \end{array}\right\|$ | YEs. \qquad 10. \qquad
 (Sk1P 10478) \square | FES. \qquad
 H. \qquad
 (5xIP 10 478) \square |
| 477 | From thom or where did you seek adrice or treatment?
 Aryone elee?
 CIRCLE ALL PERSOWS SEEM ND placts visiteo. | covernarit amo parestatal
 HOSPITAL....................... healith cemtre. \qquad
 DISPEySNRY.
 PMEASTATAL MOSP/CLIMIC...D
 VILlage meatit posf/
 horicit.....................E
 medical plivate sectok
 RELIGIUS ORG, HOSP/CLIK.F Plivale docior/ imsp/Clim. 6 PMARHCY/MEDICA STORE...I OTHER PIIVATE SECTOR TRADITIONAL PRACTIONEA...I MEIGBBCRS/BELATIVES....... OTMER \qquad | \|COVERmert ad Parastatal nosp ITAL...................... A HENTM CEMTRE. DISPENSARY. C pheastatal mosp/eltmic...D VILLACE MEMTK ROST/
 MEDICAL plivate sector HELIGIOUS ORG. HOSP/CLIX.F PRIVATE DCCTOR/MOSP/CLIM.G
 OTMER PRIVATE secto TRLDITIONS PRACYIOWER...I MEIGHBORS/RELATIVES....... J OTMER \qquad (SPECIFT) | [COVERDEMT ND PAELSTATAL MOSPITAL....................... MEALTM CEMTRE................ D: SPELKSAYY. parastaim hosp/CLIMIC...D VHLLAEE MEALTK POST/ VDAKER.....................E nedical paivate sector hiligious orc. wosp/clim.f PHIVATE DOCTOR/MOSP/CIIM. 6 PHROUCTMEDICAS STORE...I OTMER pilvate secton TRNDITIONAL PRACTIOUER...I MEIGRDCRSRELATIVES....... OTHES \qquad |
| | CMECX 475:
 FLUSO FROM ORS PACCET MEMTIONEDT | | | |
| | Yes (wWE) given fluid from Ors packet When he/she had the diarthea? | Yes.
 wo. \qquad
 | | |
| | For how samy dayt was (WWE) given fluid from the CaS packet?
 If LESS than 1 OAY, RECOAD '00' | DAYS \qquad \square
 DK. \qquad | DAYS. \qquad \square
 ox. \qquad | Days \qquad \square
 OK. \qquad |
| | CMECX 475:
 AECOMENOED HONE FLUID* MEMTIOUED? | | | |
| | Was (MakE) given a recomended hame fluld made from supar, nalt and water and/or cereal or thin porridge when he/she had the diarrhea? | TES. \qquad
 No.
 DK. \qquad
 | YEs. \qquad m. (\$x1P TO 486) DK. \qquad | |
| | for how mery dayt mal (W) glven the fluid mede from sugar, salt, and water andor cereal or thin porrioge?
 if less than 1 day, recore $\cdot 004$ | DAYS \qquad \square DK. \qquad | DATS. \qquad \square
 Dr. \qquad | DAYS. \qquad \square
 DK. \qquad |
| | Co hace to 466 for mext hirin; | OR, if mo more gitiks, co to | | |

- recomended home fluid made from sucha, salt ano hater amo/or cereal or thin porridge.

mo.	QuEStions nd Eltiers	cooimg cateconies ${ }_{\text {ceit }}$
485	CWECI 473 and 479: ons fluto from packet GIVEN TO ANY CMID ons fluto from packet mot given to any chilo ${ }^{0}$ 475 NO 479 NOT ASKED	
	Have you ever heard of a spacial product called clocal WWE) you can get for the treatment of diarrhee?	YES mo. \qquad
	Have you ever seen apecket like this before? (SHOU PACKET)	
	Have you ever prepored a solution with on of these packets to treat diarthes in yourself or acmeone else? (SHOH PACKET)	YEs. \qquad
	The last time you prepered the fluid from the ons pecket, did you prepere the whole pecket at ance or only pert of the pecket?	WHORE PACKET AI OUCE............... 1 PART OF PACKET 2 $2 \rightarrow 491$
	How mach weter did you use to prepere (LOCAL WNE OF ORS PACCET) the last time rou mede it?	
	Where cen you get the (LOCAL WANE) pecket? PROBE: Ammere else? circle all places memtiowed.	governaent and parastatal MOSPItAL. WEALTM CEMTRE.......................... DISPENSARY............................. C parastatal mosp/clinic............ 0 VILLACE HEALTH POST/MORKER.......E medical plivate sector RELIGIOUS CRG. WOSP/CLIMIC.......F Phivate DOCTOR/mOSP/CLINIC....... PMARMACY/MEDICAL STORE............ OTMER PRIVATE SEGTOR SHOP................................... traditional practidmer............ . d MEIGHBORS/RELATIVES..................K OTHER \qquad (SPECIFY)
	CHECX 4TS and 482: RECOMEMDED HONE MNE FLUIO given to my chilo RECOMENDED MONE WOT GIVEN TO AKY $4 T \mathrm{MDO}$ OR $4 T S$ AND 482 NOT A	
	Whers did you lesrn to prepere the recomended hame fluid mady from sugar, salt, and water and/or cereal or porridge given to (MANE) when he/she had diarrhea?	COVERMENT AND Parastatal MOSPITAL. \qquad healit cemtre. \qquad DISPEMSMRY. Parastatal mosp/Climic............ VILLAGE HEALTH POST/MORKER.......E medical private sector RELIGIOUS ORG. HOSP/CLIMIC.......F PRIVATE DOCTOR/HOSP/CLIMIC....... G PHARMACY/MEDICAL STORE............. DTMER PRIVATE SECTOR snce.................................... 1 traditiowal practioner. meighbors/relatives. other \qquad (SPECIFY)

geriom 3. mariace

gection 6. FERTLLITY PREFERENCES

0.	CESTIOUS ND FILTERS	
607	Given your pretent circustances, If you hed to do it over again, do rou think rou would make the seme deciation to have on aperation not to have eny more childrm?	$\begin{aligned} & \text { res.. } \end{aligned}$
	Do you regret that you (your husbend) had the operation not to have any (more) childrent	YES. mo.
	Why do you regret it?	RESPCWDEMT WAKTS MOTKER CMILD..I PARTMER GNTS AMOTMER CKILD..... 2 SIDE EFFECTS. OTHER REASOM \qquad (SPECIFY)
610	Do you think that your husband/pertner approves or disupprover of couples using a eethod to avoid pregnancy	
	How often have you talked to your husband/partner about fonity plaming in the past year?	
	Have you and your husbond/partmer ever discussed the number of children you would like to hovis?	
	Do you think your husbend/partmer uents the same nuber of childron that you want, or does he went more or fever then you went?	SNE MURER........................... 1 MORE CHILDREM. 2 FELER CHILOREM. 3 DOW'₹ KWOU................................ 8
	How tong should a couple vait before starting sexual intercourse sfter the birth of a beby	mowiss. \qquad YEARS \qquad \square OTHER \qquad 9 (SPECIFY) \qquad 998
	Should a mothar woit until sha has completely stopped breastieeding before starting to have sexual relationa again, or doemn't it metter?	Halr...................................... DOESW'T MATTER......................... 2 DOW' KNOU . \qquad
	Do you think that it is esay or difficult for a mam tho is bresstfeeding to get pregnent?	EASY............................... ${ }^{1}$
	In general, do you epprove or disapprove of couples using a method to avoid pregnancy?	APPROVE. ${ }^{\text {d }}$

mo.	QESTIOMS AD PILTERS	CoDimg Citeconies
618	CMECX 216: mas livimg ehildren mo living cmiloter If you could go beck to the 14 you could choose time you did not have amy exectly the nuber of children and could choose children to have in exactly the number of children to have in your whole lifa how merry would that be?	MuEER \qquad \square other ansuer \qquad $\%$ (SPECIFY)
619	Among the children you want to have, how mery would you prefer to be boyt and how mery to be girle?	MWEER OF SOWS \qquad \square mamer of dajohters \qquad \square W SEX PREFERERCE. \qquad 95 other anster \qquad $\%$
620	What do you think is the best number of months or years between the birth of one child and the birth of the next child	mowths \qquad YEARS. \qquad \square OTHER \qquad 9\% (SPECIFY) DOW'I KMOU. \qquad

section 7. Musbad's bacracind AD wown's vork

 If all of the children have died. If inere nee more than 3 livimg cmildrey bory simce danhay igeb, uSE ADOITIOMAL FORMS).

	[1] RESPCNDEMT	2) Yownest LIVIMG CHILD	MEXT-TOrouncest tIVIMG CMILD	$\begin{aligned} & \text { 4) secomo-io- } \\ & \text { Youmaest } \\ & \text { LIVING CHILD } \end{aligned}$
802 LINE WO. FRON 0212				
803 HNE FRON 0.212 FOR CHILDREM	(MANE)	(WAME)	(MAE)	(Ware)
804 OATE OF 8irtx FRON O215 FOR RESPOWDENT FRON O. 215 FOR CMILDREM, NO ask for day of girth	MOWTR. . . YEAR..... \square	DAY.	DAY MOWTK YEAR \square	DAY How Th YEAR..... \square
805 ECG SCAR On TOP OF RIGHT SHOLLDER		SCAK SEEM...... 1 mo scan......... 2	SCAR SEEM...... 1 wo scan......... 2	SCAE SEEM....... 1 mo scar........ 2
806 HE IGMT (in centifeters)				
807 Was MEIGHT/LEMGTM OF CMILD MEASURED WMILE CMILD WAS LYIMG DOM STAMDIMG UPR!GMT?		LYtMG............ STADIMG........ 2	เYIME............ standmg........ 2	LYIMG............ 1 STADIMG \qquad
808 LEIEMT (In kilogrmes)				
809 DATE LEIGHEO AND MEASLREO	OAT	OAY. пошт YEAR..... \square		DAY MOMTM YEAK \square
810 RESULT	measuato........ I wot presemp.... 3 effused \qquad of MER. \qquad (SPECIFY)	CHILD MEASURED. 1 CHILD stex..... 2 CHILD WOT PAESEMT 3 CHILD RE FUSED.. 4 MOIMER REPUSED. 3 OTMER. \qquad (SPEClfY)	CHILD MEASNRED. 1 CWILO SICX..... 2 CHILD WOT Pre sent. 3 CHILD REFUSED. . 4 MOTHER REFUSED. 5 0THER............ 6 (SPECTFT)	CMILD MEASURED. 1 CMILO SICX..... 2 CMILD MOT PRESEMY. 3 CMILD REFUSED.. 4 WOTMER REFUSED. 5 OTNER............ 6 (SPECIFY)
811 mane of MEASURER:		mate of assistant:		


```
                    INTERVIEWER'S OBSERVATIONS
                    (To be filled in after completing interview)
Comments About Respondent:
C_
Comments on Specific Questions:
Any Other Comments:
SUPERVISOR'S OBSERVATIONS
Name of Supervisor: ___ Dates
EDITOR'S OBSERVATIONS
```

\qquad
\qquad


```
Name of Field Editor: Date:
```

UNITED REPUBLIC OF TANZANIA BUREAU OF STATISTICS PLANNING COMMISSION TANZANIA DEMOGRAPHIC AND HEALTH SURVEY INDIVIDUAL QUESTIONNAIRE

EECTIOL 1. AEsponderit's macxation

[^17]EECTIOM 2. REPROUCTIO

¢0.	CUESfiows AD Filters	cootme catemetes $\quad 8 \times 10$
201	Do you have eny som or denghtere the are now living with rout	YES \qquad mo. \qquad $2 \rightarrow \times 203$
1202	Now many som live with yart and how many deughters live vith youl IF HONE EXTER 'CO'.	
1203	Do you have eny sone or deughters tho do not live with you?	YES \qquad 10. \qquad $2 \xrightarrow{-}+203$
1204	How many some are alive but do not live yith yous And how meny dematiters are slive but do not live with you? If WONE EMTER 'OO'.	1 SOWE ELSEMERE \qquad DAUGHTERS ELSEMHERE \qquad \square
1205	Wave you ever had a son or daughter tho was born allive but later died	vEs..
1206	In all, how many boys have difedp And how meny girls have diedt IF MONE ENTER 'OO1.	BOYS DEAD. \qquad GIRLS DEND \qquad \square
4207	SUM ANSEERS TO M202, NZOK, NO NOMS, ADD EMTER TOTAL. IF MOWE ENTER 'CO'.	TOTAL.......................
W208	CMECX M207: Just to make sure that 1 have this right: you have TOTAL \qquad chitiden born alive during your life. If that correct? PROES MD 10 \square COMRECT M201-M207 AS MECESSARY	
12009	Detween the first day of a wamen'ipariod and the first day of her mext period, are there certain time then she has a grester chance of becoming prognent then other times	
W290	During wich tim of the monthly cyele dowe a women have the greatest chance of beconing pregnent?	DURIMG MER PERIDO.................. 1 RIGNT AFIER hER PERICD MAS ENDED............................. 2 IN THE MIDOLE OF THE CTCLE....... 3 JUST BEFCRE MER PERICD EEGIMS.... 4 OTMEA \qquad (SPCLIFT) DK

 deiay or avold a pregnency. Hilch weys or minodes hove you hoerd about?

CIACLE CDOE I IM MBO2 FOR EACK METMCD MERTICNED SPOMTMEOUSLY.
 CIRCLE CODE 2 IF METMCD IS RECOCNIZED, AD COOE 3 IF MOT RECOCHIZED. THEM, FOR EACN METHOD WITM COOE 1 OR 2 CIRCLED IN K302, ASK M303 ND KSO BEFORE PROCEEDIUE TO TME MEXT METMCO.

		M302 Mave you over heard of (WETHOD)? READ DESCRIPTICN OF EACH MEIMO.	M303 have you (or your wife/parther) over uned (METMCD)7 (19ETHCO)?	NBOK Do you know there - person could go to pet (IEETHCD)?
$01]$	PILL Uomen cm take a pill every day.		$\begin{aligned} & \text { res.................. } 1 \\ & \text { wo.................... } 2 \end{aligned}$	$\begin{aligned} & \text { res. } 1 \\ & \text { wo. } 2 \end{aligned}$
02	30 Women can have a loop or coil placed inside then by a doctor or a nurse.		rES.................. 1 w. 2	$\begin{aligned} & \text { res.................................. } 1 \\ & \text { wo. } 2 \end{aligned}$
03	IWJECTIOWS Uomen can have an injection by a doctor or nurse wich stope thes from beconing pregnent for seversl monthe.		YES.................... 1 mo.................... 2	YEs. \qquad 10. \qquad
04	DINPRRAGA, FOAN, JELLY Waten can place a sponge, iuppository. diaphragm, jelly or crem inside then befors intercoursa.		$\begin{aligned} & \text { res.................... } \\ & \text { wo.................... } 2 \end{aligned}$	
05	Comod Men can use a nebber sheath during sexual inter. course. The rubber sheath is used to avoid pregnency, to prevent transmiseion of dizeases such as AlOS, or for cleanlíness.		YES. \qquad wo. \qquad	
06	female sterilization women can have an operation to avoid having any more children.		$\begin{aligned} & \text { res.................... } \\ & \text { mo.................... }{ }^{2} \end{aligned}$	$\begin{aligned} & \text { res.................................. } 1 \\ & \text { wo.................................... } 2 \end{aligned}$
07	male sierilizatiom men con have an operation to avoid having amy more childran.		have you aver had an aperation to avoid having eny more childrent YES. \qquad w \qquad	YES. \qquad wo................................... 2
08	Catendar couples can have sexuel intercourse only during the wife period of the monthly cycle, that is the time during the monthly eycle when the women is least likely to became pregnent.		$\begin{aligned} & \text { YEs................... } 1 \\ & \text { wo.................... } 2 \end{aligned}$	Do you trow there a person can obtain advice on how to use the calendar aethod? res. \qquad 140 \qquad
091	mucus meithol a women cen abserve dally the state of the acus and ovoid sexual intarcourse at the timen the meue it colorless and extremely elastic.		$\begin{aligned} & \text { res. } 1 \\ & \text { wo. } 2 \end{aligned}$	Do you know where a person can abtain edvice on how to observe changes in the nucus? YEs. \qquad wo. \qquad
10	bithorawal Men can be careful and pull out before climax.		$\begin{aligned} & \text { res.................... } 1 \\ & \text { мо..................... } 2 \end{aligned}$	

mo.	CESTIOMS AD FILTERS	coorme cateconits
1613	Is it ensy or difificult to get there?	Entr...................................... 1 Difficur \qquad
CHECX R309/RO10: mot CRREWTIY USIVG usime conocer COMDCN		
1315	Nave you ueed a condon in the last four meaks?$\mid \text { ris...................................... }\left.\left.\right\|^{1}\right\|_{M 320}$	
K316	What is the brand neme of the condion you last uedr	seavo \qquad \square Dx \qquad
How much did the condon you lant used cost7		
0318	Do you use more condona now than a year ago, about the gane nuber, or fewer?	
0319	What is the min reason you we more condom now then - yeur agot	FEAR OF CETTIMG AIDS.............. 1 feat of cetting otike sto........ 2 FAMILY PLANAIMG..................... 3 LESS EXPEMSIVE WOU.................. 4 more avallable mow. 5 OTHER \qquad 6 (SPECIFY) DR. .. 8
432	CHECX R309: mot CuREMTLY \square USIMG \square $>\times 331$	
M321	Do you intend to use a Ethod to delay or avoid heving a child at any time in the future?	
M322	What is the main reason you do not intend to une - Ethod?	LANTS CMILOREM. LACX of पMOHEDGE......................... 02 PMRTMER OPROSED. 03 cost too muck. 06 SIDE EFFECTS.......................... 05 HEALTM COWCERリS. 06 *ELIGIOM. 08 OPPOSED TO FAMILY PLAMIEG...... 09 fatalisitc........................... 10 OTMER PEOPLE OPPOSED. 11 IMFREQENT SEX...................... 12 VIFE/PARTMER IMFECDND............ ${ }^{13}$ IXCONVEMIEMT........................ . . IS WOT MARKIEO/MO PARTMER........... 16 OTHER \qquad 17 (SPECIFY) $\text { ok. } 98$
N323	Do you intend to use a method within the next 12 months?	

\%o.	UESTIONS AD Filters	
M324	Uhen you use a method, which mithod would you prefor to uee?	Pllt................................... 01 iv. \qquad .02 14JECTJCNE. \qquad .03 DIAPRRACXFONW AELLF . \qquad α COMDCH. \qquad .05 FEMALE STERILIZATIOM..............0s MALE BTERILI2AIIOM................ 07 CALEMDMA. \qquad .08 MaCNE WETMO \qquad .09 OTMER \qquad .10 (SPECJFT) UNSURE. \qquad 9
M325	Where can you get (NETHOD MEMYIOWED IM M324)? (MAME OF PLACE)	GOVERMEMT AN PAEASTATAL COWSULTAMT HOSPITAL............. 11 REGSOMAL MOSPITAL................. 12 DISTRICT MOSPITAL.................. 13 HEALTM CEMTRE...................... 16 DISPEMSARY. 15 PaRASTATAL MEALTK FACILITY.... 16 VILLAGE HEALTK ROST/NORIER.....17———M331 medical private sector RELIGIOUS ORG. FACILITY. \qquad PRIV. DOCTOR/CLIMIC/MOSPITAL. . 22 PHAEMACY/HEDICAL STCRE \square \qquad 04329 \rightarrow (N331 OTMER PRIVATE sectce SHOP. \qquad \qquad \qquad 31 $1 \rightarrow \times 30$ WEIGHBORS/RELATIVES. OTHER \qquad 41 \qquad \qquad $]^{2433:}$
1326	CMECX MS10: usimg calemoer, mads methed yithdramal on other traditioual USIMG A MODERM METMO WETHCD \square	
1327	Do you know of a plece where you cen obtain - method of faily plaming?	YES. mo \qquad -
4328	Where is that?	COVEREEEMT AM PARASTATAL CONSLLTAKT MOSPITAL............. 11 REGIOMAL MOSPITAL................ 12 REGIOMAL MOSPITAL................ 12 DISTRICT MOSPITAL................ 13 MEALTH CEMTRE...................... 16 DISPEMSARY. 15 palastatal health facility.... 16 VILLAGE MEALTM POST/MORKER.....17——HO31 medical private sector RELIGIOUS CRG. PACILITY........ 21 PRIV. DOCTOQ/CLIMIC/HOSPITAL.. 22 PHARMACY/MEDICAL STCRE......... 23 otner paivate sector sHop. 31 MEIGHBORS/RELATIVES. OTHER \qquad \qquad $32 —=3334$ (SPECIFY) ,
1329	How long does it take to travel from your home to this plece? IF Less thal owe main, recond travel time in mimutes. OTMERISE, RECORD THAVEL TINE IM WORS.	minutes. \qquad HOURS. \qquad \square ok. \qquad
M330	Is it easy or difficult to get there?	EASY............................. ${ }^{\text {d }}$

mo.	OUBTIOMS AD PILERS	1ater cooime cateconits exie
401	Heve you mer been merried or lived with a wement	res. \qquad 10. \qquad $2 \rightarrow \rightarrow 0 S$
W02	Are you now married or living with a partner, or are you now yidowed, or divoreed or no longer tiving together?	MRRIED. 1 lIVING TOCETHER..................... . 2 WIDOED. DIVORCED/WO LONGER LIVIWG TCGETMER.
403	How many wives do you have?	maskr.................... \square
4 OH	How old were you then you atarted living with your (first) wift or partnery	
405	If mever married on lived with a woman: Have you ever hed sexual intercourse?	YEs. \qquad 10. \qquad
M06	Wor we need some details about your sexual activity in order so get a better understanding of fanily plaming and health. Kow many times did you have sexual intercourse in the last four meaks?	TIMES \qquad \square
407	How many times in santh do you unully have sexual intercourse?	rimes..................... \square
8	CHECK MO6: MOD SEXUAL IUTERCOMRE OWE OR MORE TIMES IM LAST FOM HEEKS	
1409	With how many difforent women did you have sex in the last four meoke?	muker of women............. \square
W10	Did you we condon with my of thene womm?	
W611	When was the last time you had sexual intercourse?	DAYS ACO. \qquad LEEXS ACD. \qquad MOMTHS ACO. YEARS ACO. \qquad
W 42	How old were you then you first had sexuat intercourse?	AGE \qquad \square FIRST TIME WHEN MARRIED. \qquad
413	patsemce of others ay this poimt.	

mo.	QESTIOUS AD FILYER	coolng categories
M 01	Mow 1 have a fer questiona about o vory importent topic. Mave you heard of on illness called AlOS?	FEs.. 1 10 \qquad
MS02	from which sources of inforention or persons have you heard about AlDS in the lant month? RECORD ALL MEMTIONED.	Lento. \qquad T. MEUSPAPERS. C MEALTM SORXERS....................... D MOSOES S/CHURCHES FRIENDSRELATIVES. \qquad SCHOOLS/OVRAK TEACHERS............ G SLOCNIS/PAUPHLETS/POSTERS. COMAMITY MEETIMGS.................. I Con office. OTMER \qquad K (SPEC1FT) WOWE. \qquad
10503	How is AlDS transmitted RECORD ALL MEMTIONED.	SEXUAL IMTERCOURSE..................A MEEDLES/BLADES/SKIM PUMCTURES... 8 mother to chilo.................... . TRANSFUSIOW OF IMFECTED BLOCO...D OTHER \qquad (SPECIFY) DOM'T DNOU. . F
nsen	Do you think that you can get alos from shaking hande with someone who has AlDS? hugging sameone tho has AIDS7 kisaing someone tho has AlDS7 wearing the clothes of someone tho has AlOS7 charing eating utensile with someone tho has Al0S? stepping on the urine or stool of someone the has AlDS? eosquito, flea or bedtug bites?	
MS05	Is it poseible for a heat thy looking person to have Alds?	
1006	Is it possible for swom tho has the AlDS virue to give birth to ehild with the Alos virum?	Yes................................. ${ }^{1}$
10507	Uhat do you supgest is the most faportant thing the government thould do for people who have A10S7	PROVIDE MEDICAL TREATMENT........ 1 melp relatives provide care..... 2 [SOLAJE/OURAKTINE/JAIL........... 3 Нот 日e luvalved....................... 4 DTME: \qquad (SPECIFY)
WSO6	If your relative is suffering with A!OS, tho would you prefer to care for hia/her?	helatives/frienos. 1 GOVERMEST. 2 RELIGIOUS ORG./MISSION............. 3 щс8ор / ABANDON other \qquad (SPECIFY)

SECTIOM 6. FERTILITY MEFEREMCES

SECTIOM 7. LAMCJACE IMFOMATIOM

INTERVIENER'S OBSERVATIONS (To be filled in after completing interview)

Comments About Respondent: \qquad
\qquad

Comments on Specific Questions: \qquad
\qquad

Any Other Comments:

SUPERVISOR'S OBSERVATIONS
Name of Supervisor: ___ Date:

EDITOR'S OBSERVATIONS
\qquad

TAMZANIA DGDCNAPMIC AND REAT IM gulveys

 SERVICE AVAILAEILITY CUESTIONMAIRingzanla
BUREAJ OF STATISIICS, PLANNING COMISSIOM

IDEMTIFICATIOM	
Place kame	
REGION...	
DISTRICT. .	
Hen..	
EMNERATION AREA...	
UR8AN/RURAL (urban=1, ruralaz)................................. .	
LOCALITY TYPE (major toms1, large town=2, small tomns, village=h)	

section 1a. Comumity characteristics

Mo.	OEStiows	cooing catecories	SKIP 10
QESTIOWS 101 to 102 are 10 eg nasuered by ime imierviemer upow arrival at tue ciuster.			
101	IYPE of Locality (in wich cluster is found/rearest to cluster)	MAJOR TON.. LARGE TOM \qquad SHALL TON village \qquad \qquad	$\longrightarrow \quad 111$
102	density of village		

the remain:wg ouestions in sections one and tho are to be answered by knonedgeable informats from the cluster.

103	What is the name of the nearest urban center?	\qquad	
104	How far is it in kilometers to the nearest urben centery	DO. TO mentest UR8AM CENTER...... \square	
105	What are the most commonly used types of transportation to go to the nearest urban center? (CIRCLE ALL APPLICABLE)		
106	Does this village/commenity keep records of births and deaths?	YES................................... 1 wo.............................. 2	
107	What is the type of the alain access raod to this commity/ village?	all heather rono................... 1 SEASOWAL 2OND....................... 2 Paith. OTHER (RIVER/RAILYAY)............... 4	
108	What is the major economic activity of commity/village inhabitants? (CIRCLE ONE)		
109	What is the malk source of orinking water in this commuityg village?	PIPED TO HO்SES..................... 1 PUBLIC TAP............................ 2 VELL..................................... 3 LAKE, RIVER, SPRIKG................ 4 RAIMLATER TANK...................... 5 OTMER \qquad .,. 6	$\rightarrow 111$
110	How far is it in meters to the main source of drinking water?	meters to mater SOURCE.............	
119	Is there electricity in this commnity/village?		
112	What is the man method of waste disposal in this communityl village?	PIT INSIDE/OUTSIDE COMPOUND..... 1 RUBBISK BIM......................... 2 TKRON IKSIDE/OUTSIOE COMPOUND. . 3 OTHER \qquad .4	
113	Is there telephone service or a radio call for this cormunity/ villafe?		
114	What :rpe of toilet facilities are used by most hourseholds in th's commity/village?		

IMIERVIEvER: Wow I mould like to ast you about the distances to the nearest of varias types of schools and services, how you usully go there and how lone lt takes to get there from here.

coots: [a] $96=96$
00 less than $1 /$ locsted
in village
$98=$ Ho known facility
(b) Car/lus 1 Animel 2 Walking Cycling Other

```
Are there adult literacy classes (Kisomo Chenye Mamufae)
in this community/village?
rEs.................................
m0................................}
```

COMMENTS:
section ic. healin amd fmity planxing procrans in the comumity

Yo.	arsilows	coolmg catecories	Sx19 10
119	It there e traditional birth attendent avoilable to women here tho regularty essists during delivery		$\rightarrow 120$
1190	Has the traditional birth atsendont had emy speciat training fron the MOH or other organisation?		
120	Is this commisy visited by a maternal and child health (MCH) alde?	YES............................... 1 W0........................ 2	
121	Is there a traditionsl healer available in this commity/ village?		
122	Does a fanily plaming field worker from unill visit this commenty/village? (ove or OUC or RUC)	YES.................................... 1 MO 2	$\rightarrow 123$
122a	How of ten does the faily plaming field worker come to this commnity/village and give motivational talks?	W0. Of TIMES \square PER MOWIM.. 1	
122b	Does the family plaming worker distribute any contraceptives during the visit?	Yes.............................. 11 m0......................... 21	
123	Does this commanity/village have one or more village healith workers?	res............................. 1 no....................... 2	$\rightarrow 126$
1234	Have any of the village health workers been trained?	res.............................. ${ }^{1} 1$ no........................... 2	
1236	Are any of the village health workers paid by the village/ commaty as a group?	res................................... 1 $w 0 .$.	\rightarrow 123d
123c	Has the village health worker been paid in the last 3 months?	YES................................ ${ }^{1}$ mo....................... 2	
123 d	Does village health worker provide: Chloraquine syrup? Fanily Plaming Motivition? Condons? ORS instructions ORS Packets? Antenstal Care? Grouth Manitoring? Enviromental Sanitation Talks?	CHLOROOUIKE: YE 5. wo. \qquad \qquad f MAILY PLAXMIMG MOTIVAIIOM: Yes.................................... 1 10 . \qquad CONDONS: YEs..................................... 1 mo. \qquad ORS IMSTRUCTIO : res.................................... 1 \% \qquad ORS PACXETS: YES..................................... 1 mo....................................... 2 AMTENATAL CARE: YES.................................... 1 wo....................................... 2 granth mowttorikg: YES...................................... 1 No..................................... 2 SAMITATION TALKS: res.................................. 1 wo...................................... 2	
	COMTE4TS: $\quad 1.3$		

40.	OuFsitions	cooing categories	exif ${ }^{\text {ro }}$
126	is this commulity/villege visited by one or more outresch prograns from a dispensary, healith centre or hospital?	res...	$\rightarrow 125$
1268	Does an outreach program provide: Growth Monitoring? Immisation? Antenstal Care? Condoms ? Family Plaming Motivations Contraceptive pills 7	GROUTH MOWITCRIMG: res. 世о. \qquad IRONISATIOM: res...................................... 1 MO. 2 antexatal care: res..................................... 1 mo. \qquad COMDONS : rEs..................................... 1 \% \qquad FAMILY PLANHIMG motivation: YES. ※0... 2 PILLS: res...................................... 1 wo. \qquad	
125	Ia there an acrive village health committee (VHC)/primary health comnittee in this commaity/village?	res..	
126	Have you had a village Health Day in the last 3 months?	YEs..................................... .	$\rightarrow 127$
1264	Vas it organised by the village/conmmity		
127	Have you had any AlOS campsigns in this cormunity/village?		$\rightarrow 128$
127.	How many AlDS campaliga have you had in the last years	MUMER OF AIDS CAMPAIGMS IN LASI YERR.	
1270	Have you had an Al05 campaign in the last three months?		
128	Other then for Al05, have you ever had any health or family plaming campeigns in this comunity/village?		- Section 2
12\%	How nany health and family plaming campaigns have you had in the last year?	MRBER OF KEALTM CAMPAIGNS IE LASY YEAR. . \square	
1280	Have you had o heslth or fanily plaming carpaign in the last three months?		\rightarrow Section 2
128c	that was the health compaign about? (CIRCLE ALL APPLICABLE)	benefits of prodonged lactation.a EP! CRS malarla. WUTRITIOM (FOD IS LIFE).........E shitarion. FP RNDIO PROCRIM. 6 BENEFITS OF CKILD SPACIMG......... SPECIFIC METHCD(S) PROMOTIOW....I OTHER (SPECIFY) \qquad	

IMfenviever: I mplaming to visit facilities providing asternal and child health services including faily piarring throughout ianasia and together we can ldentify those in this area that i m interested in. I plan to visit privite doctors (which include those in private clinics), private pharmacies or andical atores, dispensaries, health centers and hospitels.

Whet is the neme of the WEAREST (YA KARIBU ZIADI XULIKO 2OK) doctor to this comanity with e private practice or in a private clínict (a docior with a private practice is a docior mo sees wanem and children uhere the patitit must pat for the visit. often in tanzanta, this docior will work in a goverment facility during workimg mars and see palients privately after hours.)

What is the name of the MEAREST private pharmacy or medical store to this comanity (A PRIVATE PHARMACY IS a sToas OR SHOP UHERE MEDICINE IS SOLD AHD WERE THERE MAY BE A TRAIMED PHARMCIST YOO CAN FILL PRESCRIPTIONS.)

That is the name of the WEAREST dispensary (zahanati) providing health services for women and children to this community (DISPEMSARIES ARE WARD LEVEL FACILITIES STAFFED EY A RURAL MEDICAL AIDE. THESE FACILITIES PROVIDE LOTK BASIC CURATIVE AND PREVENTIVE CARE AND GENERALLY MAVE FEY OR NO BEDS. PATIENTS ARE GENERALLY NOT AOMITTED IN DISPEMSARIES.)

What is the name of the MEAREST health centre (kitwo cha afya) providing health services for women and chllaren to this comminity (HEALTM CEMTRES ARE AT THE DIVISION LEVEL, ARE RRE OY MEDICAL ASSISTALTS AND MAVE AM adOITIOWAL SEVEM OR EIGHT REALYK WORERS. ThEY IEND TO PROVIDE THE SAME TYPES OF MSIC PREVEMYIVE AND QRATIVE CARE AS DISPEMSARIES QUT MAVE mORE BEDS AND PATIEKTS ARE ADMITIED.)

What is the name of the WEAREST hospital providing health services for women and children to this comanity? (MOSPITALS ARE AT THE ZONAL, REGIONAL AND DISTRICY LEVEL AND ARE RUN BY MEDICAL OFFICERS. TMEY PROVIDE Curative and prevemilve kealit services and are the final referral cemyer. they provide the most corpatenemive CARE AN ARE STAFFED BY DOCTORS. MOSPITALS CAK BE CALLED CONSULTAKT, REGIOUAL OR DISTRICY MOSPITALS.)

IMPERVItuR: Now I going to ask some adicional questions sbout the focilitios that you juet mentioned. A. mivale docion

Mo.	OuEstiows	COOIMG CATEGORIES	SXIP T:
2201	WAME OF PRIVATE DOCIOR (COPY FROM SECTION 2 COVER PAGE).	PRIVAIE DOCTOR'S MAE \qquad MOT APPLICABLE........................... 88	$\rightarrow 8201$
1202	Where is the private doctor's practice located	LOCNITY	
4203	How for is it (in knss) from here? (LRITE IM '001 IF LESS TMAN I KILOMETER. IF 1 TO 95 KILOMETERS, wRITE IM maget as given in cluster. if 9 kilometers or more, URITE IK '96'.)	KILOETERS. \qquad \square If MORE TKAK 30 gM	
0206	What is the cost common type of transport to the doctor's practice?		
4205	How long doet it take to get from here to (PRIVATE DOCTOR's WNE) usimg eost common type of transport?	hous \qquad \square MIMTES. \qquad \square	
4208	Does this private doctor provide fanily plaming services?		\rightarrow A212
A207	Who is the nearest doctor with a private practice who provides fanity plaming services to this comanity	PRIVATE DOCIOR'S MAE \qquad MOT APPLICABLE. \qquad	\rightarrow A212
4208	there is his/mer practice located	Locultr	
A209	How far is it (in kens) from here? (WRITE IM '00' If LESS THAN 1 KILOMEIER. If 1 TO 95 kILONEIERS, WRITE IN MMRER AS GIVEM IN CLUSTER. IF 9 KILOWETERS OR MORE, WITE IN '\%'.)	KILOETERS \qquad \square IF MORE than 30 10-	
1210	What is the cost comon type of transport to the doctor's practice?		
4211	How long does it take to get from here to (PRIVAIE DOCTOR'S MAME) using cost common type of transport?	Hass. \qquad \square MIA. YES \qquad \square	\square
A212	How rany private doctor practices in total are there within 30 kiloneters?		

boxes in the 'skip to' column are to be used in the instance of misidemilfication.
D. PMARMCT

no.	Questiows	cooimg caitgotis	srip to
0201	WAME Of PKARmACY (COPY frow section 2 Cover pace).	PhARMACY NAME \qquad MOT APPLICABLE.......................... 98	C201
3202	Where is (PHARMACY LAME) locatedr	LOCALITY	
3203	How far is it (in kns) from here? (WRite in 'oo' if less than 1 kilageter. if 1 to es kilometers, write in mlamber as given in cluster. if \% xilometers or more, WRITE IN 'و'.)	KILCMETERS \qquad \square If mORE THMN 30 104	
B206	What is the most common type of transport to the pharmacy	CAR/\&us................................... 1 AKIMAL................................... 2 Walking.................................... ${ }^{3}$ CYCLIMG. 4 OTHER \qquad	
2205	How long does it take to get from here to (PHARMACY MWE) using most common type of transporty	HOURS. \qquad \square MIMUTES \qquad \square	\square
2206	Does this pharnacy sell fanily plaming supplies?		$\rightarrow \mathbf{2 2 1 2}$
0207	What is the nane of the nearest pharnacy wich sells family plaming supplies to this commenity	PHARMACY MAME \qquad MOT APPLICABLE \qquad	8212
2088	Where is it locsted	LOCALITY	
8209	How far is it (in kms) from heres (LRITE IN 'OO' IF LESS THAN 1 KILOMETER. IF 1 TO 05 KILOMETERS, wite in humber as given in cluster. if of kilameters or more, WRITE IM '96'.)	KILOMETERS. \qquad \square If more than 30 or	
2210	What is the most common type of trasport to the pharmacy?	CAR/gus................................. 1 Animal................................... 2 balking. 3 crCLING. OTRER \qquad	\square
8211	How long does it take to get from here so (PKARMACY IAME) using most cormon type of transport?	HOURS. \qquad \square MIMUTES \qquad \square	
82:2	How many private pharmacies in total are there within 30 kilometers?		

BCXES IN THE 'SKIP TO' COLUMN ARE TO BE USED IN THE IMSTANCE OF MISIDEMTIFICATIOM.
COMMENTS:

C. OISPEKSARY

boxes in the 'skip 10' coluak are to be used in the instakce of misidemtificaition.
$2-6$
COMMENTS:
D. healit cemtre

H.	Qustiows	cooing categories	SKIP 10
0201	name of healik cemire (COPY from section 2 Cover pace).	health centre WUE \qquad MOT APPLICABLE........................... 98	$\rightarrow E 201$
0202	Where is (HEaLTM Centre make) locatedt	Locality	
0203	Now for is it (in kns) from here? (WRITE IM ' 00 ' if LESS TKAN 1 KILOMETER. If 1 TO 95 XILOMETERS, URITE IM MMBER AS GIVEM IM CLUSTER. If 9 kilometers or more, WRITE IM '\%'.)	KILONETERS. \qquad \square if MORE THAN 30 DO-	
0206	What is the most common type of transport to the health centre?		
0205	Mow long does it take to get from here to (healit Centre mame) using most common type of transport?	HOURS \qquad \square minutes. \qquad \square	
0206	Does this health contre provide faally plaming services?		$\rightarrow 0212$
0207	What is the name of the nearest health centre providing fanily plaming services to this commuity	healtin centre NAME \qquad MOT APPLICABLE. \qquad	- 0212
0208	Where is it located	LOCALITY	
0209	How far is it (in kes) from here? (WRITE IN 'OO' If LESS TMAK 1 KILONETER. If 1 TO 95 KILONETERS, WRITE iK mumber as given in cluster. if of kilometers or more, WRITE IM '\%'.)	KILOMETERS. \qquad \square If MORE	
0210	What is the most cormon type of transport to the health centre?		
0211	How long does it take to get from here to (HEALTK CENTRE MAME) using nost common type of transport?	HOURS. \qquad \square MINUTES \qquad \square	
0212	How many health centres in total are there within 30 kilometers?		

boxes in the 'sxip io' column are to be used in the instance of misidentificaitom.

bCXES IN THE 'SKIP TO' COLIN ARE TO BE USED IN THE INSTANCE OF MISIDENTIFICATION.

COMTHCEPIIVE mETMCO IDEMTIFICATION

Mo.	OESTIONS	coolng categories	SxiP 10
213	What is the name of the nesrest facility or provider to this coommity there birth control pills can be obtalned?	NEAREST PILL PROVIDER MANE	
214	Now far is it (in kns) from here? Grite in mamer as given in clusier. If of kilometers or more, URIE IM '9'.)	KILOMETER5................... \square	
215	What is the name of the nearest facility or provider to this commenity where condons can be obtained?	WEAREST CONDOM PROVIDER MAME	
216	How far is it (in tons) from here? (hrite in ' 00 ' If less than 1 xilloneter. If 1 TO 9 KILOMETERS, Leite in mmaer as given in Cluster. if 96 kilageiers or more. vRITE IK '96'.)	KıLOMETERS. \square	
217	What is the name of the nearest facility or provider to this commaty were injectsbles (Depo Provera) can be obtained?	wearest injectable provider name	
218	Mow far is it (in kens) from here? write in muber as given in cluster. If of kilameters of more, vaite IX '\%'.)	KItaneters. \square	
219	What is the name of the nearest facility or provider to this commity where foaraing tablets, foan or jelly can be obtained?	MEAREST FQAMIMG TABLET PROVIDER MAEE	
220	How far is it (in kus) from here? (GRIIE in 'OO' if less than 1 kilometer. if 1 to 95 kilometers, veite im maber as given in cluster. if of kiloweters or more, vite IM 'و'.)	KILQRETERS.	
221	What is the name of the nearest facility or provider to this commity there lucDs (loops) can be inserted?	mearest lucd provider mame	
222	How far is it (in kms) from here? (hrite in '00' if less iman i kilometer. if 1 to 95 kitometers, viIte im maber as givex in clusier. if of xilameters or more, VRITE IM '\%'.)	KILQETERS. \square	
223	What is the name of the nearest facility or provider to this commity where contraceptive sterilisation can be obtained?	WEAREST STERILISATION PROVIDER MANE	
224	How far is it (in kns) from here? (WRITE IM 'OO' IF LESS IHAN I KILONETER. IF 1 TO 95 KILCNETERS, URITE IM MHBER AS GIVEN IM GLUSTER. IF 96 KILCNETERS OR MORE, URITE IN '96'.)	KILOMETERS.................... \square	

mane

1. \qquad
2. \qquad
3. \qquad
\qquad
4. \qquad \longrightarrow
5. \qquad
\qquad
6. TOTAL MUMBER OF IMFORMANTS IT THE CLUSTER....... \square
end of cluster imterviey.

LOG OF fACILITIES TO BE VISITED

 meters of the cluster. get this imformition from ouestiows a-ezo3 AND A-Ez09.

FACILITY TYPE \& NAME
oIstance
LOCATIOM:
date visited: FROM CLUSTER
\qquad

\square
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad

secilom 3. Mase:
mospital visit
Dete:
 at the facility based on your onn orseryatioms. then flim a monedgeable source at the factitiy to ansmer the REMAIMIMG OUESIIOWS.

COPLETE VISIT
If this facility has already been visited for a different cluster, record ons cluster maber mere: If the facility has alrendy beem visiled, a secom visit is mot meeded.

300	if this is the first facility visitid after the cluster visit RECORD DISTANCE fROM CIUSTER FRON IME COONETER.	distance fron cluster.... \square MOT fIRST FACILITT VISITED. \qquad
301	© you think that the estimate of oistance to the facility given ix the cluster is reasomable?	
302	Do you think that the estimate of tike time to the facility GIVER IM TKE CLUSTER IS REASOWABLE?	

QUESTIONS TO BE ASKED OF STAFF PERSON AT FACILITY:

Mo.	OUESTIOMS	cooimg catecories	SxIP 10
303	In what year did this hospital open?	YEAR OPEMED............. $19 \square \square$	
306	Under what authority is this hospital operated?	GOVERHMERT............................... . 1 PRIVATE................................... 2 VOLUNTARY AGEMCY....................... 3 OTHER \qquad .6	
305	What is the status of this hospitaly		
306	How many beds does this hospital have?	mamber of beds....... \square	
307	On average, how many outpatients are seen dally ot this facility (Outpatients are people seen for preventive care and sick people who 90 home the same day)	mmber of daily OUTPATIENTS....... \square	
308	How marry regular staff of the following types does the hospital hove? Doctors Medical essistants Rural medical sides Public health nurses Trained midwives MCH aides Auxillary staff (health oficers, health attendants, other nu-ses)	IUNBER OF: Doctiors. \qquad \square medical assistamts. \qquad \square rural medical aides. \qquad \square MURSES. \qquad \square n:culves \qquad \square meh aldes \qquad \square aUXillaRy staff \qquad \square	

Mo.	Qusilows	Coolmg categories	Sxip to
309	Ooes this facility normilly use disposable needles whem giving injections for MCK imenisations?		$\rightarrow 312$
310	is this facility out now or has it run out of its supply of MCM disposoble needles at any time in the last 6 months?		
311	Does this facility ever reuse disposable needies?		
312	Ooes this facility nomally use disposeble gloves?		$\rightarrow 314$
313	is this facility out now or has it run out of disposable gloves at any time in the last 6 months?		
314	What is the method mosi frequently used for the sterilisation of medical instruments (not linens)? (Circle one)	ELECTRIC STERIUTER................... 1 AUTOCLAVE. \qquad STEAM PRESSURE STERILISER.......... 3 BOIL OVER KEROSEME STOVE........... 4 BOIL OVER CHARCOAL/4000 STOVE..... S KOUE. ${ }_{7}$	$\rightarrow 316$
315	Was the fecility NOT been able to sterilise medical instruments for any reason (e.g. equipment broken, no electricity, no fuel) at ary time in the last six months?		
316	ooes the facility have the following items in wrking order/ in stock: Ruming water? Electricity Refrigerator? Kerosene? Telephone or radio transmitter? Vehicle? Motorbike? opersting theatre in working ordery Delivery bedr Delivery kit? Waiting area for mamen in labor? llood bank? Exminstion couch? Examination light for aymecological examination? tucD (loop insertion) kit? Minilap kit for tubal ligation? Heighing scales for children? adult weighing scale? Growth cards? Liners? Gauze? Cotton wool? Antiseptics? llood pressure machine? Hesoglobinometer for diagnosis of anemia? \#icroscope? AIDS test (Elise test)?		
317	Do you have in outreach progrm?	Yes..	$\rightarrow 320$
318	How many villages/commenities do you regularly visit?	NUMBER OF SITES.................... $\square \square$	

services available at the facility:
Mow i mould like to ask you about moternal and child health services avallable ot this hosplial. ASK 0.320 for ike fikst service. If this service is avallable, cowtime across the table, if not, ask aboit the mext service.

service	[320 is (SERVICE) avallable?	321 How many days per weet is (SERVICE) arailable?	\| 322 In what year was (SERVICE) first offered here?
1 Antenatal care			$19 \square$
2 Dellivery care			19 \square
3 P Postnatal care	res.......................... 1 wo................................	\square	19
\qquad Child immisation sessions			19 \square
\qquad Child growth monitoring sessions			19 \square
6 (Rehydration unit		\square	$19 \square$

medication availlability at the facillity:
Now I would like to ask you about medications and other supplies available at this facility. When I have finished, I will neec to see the medications you have in stock. ASK 0.323 fOR LACH MEDICATION. If THE REDICATIOW IS AVAILABLE, ASK 0.324 , IF MOT as 0.325. If the medication mas at some time been available, ask 0.326. If 0.323 is yes, record mather you see the medicayion.

\begin{tabular}{|c|c|c|c|c|c|}
\hline MEDICATION \& 323 is (MEDICATION) lavailable now? \& 324 At any time in the last 6 months didy you run out of (MEDICATION)? \& 325 Nave you ever hed (MEDICATIOW)? \& |326 thy do you not have (MEDICA[IOW) now? (a] \& $\left\lvert\, \begin{gathered}327 \text { KEDICATIO } \\ \text { SEEM/HOT SEEM }\end{gathered}\right.$ status

\hline 1 Chlorapuine syrup \& Yes....... 1
wo...... $\left.{ }^{2}\right]$
325 \& \& \& \square \& $$
\begin{aligned}
& \text { SEEM......... } 1 \\
& \text { WOT SEEM.... } 2
\end{aligned}
$$

\hline 2 Ouinime \& YES......... 1
wo.......

325 \& \& \& \square \& $$
\begin{aligned}
& \text { SEEN } 1 \\
& \text { WOT SEEM.... } 2
\end{aligned}
$$

\hline 3 Penicillin \& Yes.........
wo........
32s \& \& YES............ ${ }^{1}$
wo........... ${ }^{2}$

323 \& \square \& $$
\begin{aligned}
& \text { SEEK } 1 \\
& \text { WOT SEEX. . . } 2
\end{aligned}
$$

\hline $4 . \int$ Iran teblets \& \& \& \& \square \& $$
\begin{aligned}
& \text { SEEN......... } 1 \\
& \text { WOP SEEM.... } 2
\end{aligned}
$$

\hline S follic acid \& Yes.........
wo.......
325 \& \& YES............. ${ }^{1}$
wo......... ${ }^{2}$

323 \& \square \& $$
\begin{aligned}
& \text { SEEN } 1 \\
& \text { WOT SEEM. . . } 2
\end{aligned}
$$

\hline 6 ORS packets \& Yes......... 1
wo........

32s \& \& \& \square \& $$
\begin{aligned}
& \text { SEER......... } 1 \\
& \text { WOI SEEM.... } 2
\end{aligned}
$$

\hline 7 Condons \& YES......... 1
wo.......

325 \& \& $$
\begin{array}{|l|l|}
\hline \text { res............. } 1 \\
\text { wo................. } \\
& 327
\end{array}
$$ \& \square \& \[

$$
\begin{aligned}
& \text { SEEM........ } 1 \\
& \text { NOT SEEM.... } 2
\end{aligned}
$$
\]

\hline \multicolumn{6}{|l|}{cooss: [a] Insufficient funds $=1$| Not designated to carry |
| :--- |
| |
| |
| |
| |
| Unable to get resupply $=2$ |
| Out of current month's supply $=6$ |
| $3-3$ |
| 289 |\quad Other}

\hline
\end{tabular}

Mo.	Qussioms	coolms careconies	SkiP 10
328	Do you have enough spece in this facility for MCK services?		
329	Are immisations avallable for children now?		$\rightarrow 332$
330	At any time in the last 6 months have you run out of vaccines?	Yes............................... 11 wo............................. 2	
331	I need to see your supply of voccines now.	Vaccines seem im refrigeraior..... 1 VACCINES SEEX WOT IN REFRIGERATOR. 2 Vaccines mor seex. 3	
332	Does this facility provide fmily plaming services?		$\rightarrow 338$
333	What is your position or titte here?		$\rightarrow 354$

If the family planning informition is obiaimed from a second facility, begim duestiowmalre with o. 36.

336	In what year did this hospital open?	YEAR OPEMED........... $19 \square \square$	
335	Under what authority is this hospital operated	 OTHER \qquad	
336	What is the status of this hospital?		
337	Does the facility have the following items in working order: Ruming mater? Electricity operating theatre in working ordery Exeminetion couch Examination light for gynecological examination? slood pressure machine? IUCD (loop insertion) kit? Minilap kit for tubal ligationt		
338	Does the hospital have the following trpes of staff who are trained in fanily plaming provision? Doctors? Kedical Assistants? Rural Kedical Aides? Nurses? MCH Aldes?		$\rightarrow 340$
339	Are aty farily plaming doctors trained in sterilisation procedures (tubel ligation or vasectomy)?	YES............................... 1 no......................... 2	
360	Are the following types of staff, if available, trained in IUCD (loop) insertions Doctora? Medical Assistants? Rural Medical Aides? Murses? MCH Aldes?		
341	ouring an overage month, how many women cone to get family plaming for the first time?	NEW PATIENTS......... \square	

Mo.	QuESTIOWS	coolvg categories	Sxip 10
462	During on sverage month, how many wamen come beckuse they need more fanily plaming (resupply)?	RESUPPLY PATIENTS..... $\square_{\square}^{\square}$	
33	Do you fill out an MCH 3 form (rearifa ya mahuchurio ya akina mae na vototo kwa mezt au maka) regularly	YES.. 1 wo... 2	345
344	What do you do this form?	SEVD TO MOH.............................. 1 SEMO TO OISTRICT OFFICER............ 2 SEND TO 2ONAL OFFICE.................. 3 KEEP IM FILE. MOTHING/DOW'T KNOU.................... . 8	

cowthaceptive methoo availability:
Mow I would like to ask you sbout wich family plaming methods are available at this hospital. I aust also see the eithode when we are finished. ASK ABOUT TKE FIRST KETHCD. IF TMIS METMCD IS AVAIUBLE FROM THE HOSPITAL, MOVE ACROSS TIE TABLE. If the methoo is not ayallaale how, ask o. 350 and then eegik again with the mext meimio.

METHCD	345 is (METHOD) avallable now?	346 How nany days per week is (METHCO) avallable?	37 In that year did you first offer (METHOC)?	348 ts your stock of (METHCO) in date or out of date?	349 METHOD SEEN/MOT SEEM STATUS	350 now many weets aso did you run out of (METMOD)? (a)
01 ¢ Pill	YES..... H0.....2 350	\square	$19 \square$	IN DATE............ 1 OUT OF OATE....... 2 BOTM. \qquad	SEEN......... 1 MOT SEEM... 2	\square uxs.
02 11400 (loop)	res..... W0....2 350		$19 \square$	In DATE............ 1 ant Of DATE....... 2 sorn. \qquad	SEEN......... 1 MOT SEEN. . . 2	\square Wx.
03 Injection	YES..... MO.....2 350		$19 \square$	IM DATE............ 1 ant OF DATE...... 2 BOTK. \qquad	$\begin{aligned} & \text { SEEM. } 1 \\ & \text { WOT SEEM. . } 2 \end{aligned}$	\square uxs.
\qquad Fomming tablets/ foand jelly	Yes..... NO.... 350		$19 \square$	In DATE............ 1 aI OF DATE....... 2 BOTK. 3	SEEM......... 1 MOT SEEM... 2	\square Wus.
Contraceptive sterilisation rtubal ligation/vasectomy)	$\begin{aligned} & \text { YES...... } \\ & \text { wO..... } \\ & 3504 \end{aligned}$		19		WH.	
	YES..... MO. 350..	\square	$19 \square$			相 $=\square$

COOES: [a] 97 : Kever stocked nethod

凹.	OESTIOWS	COOING CATECORIES	Sxip to
351	Do you have your contraceptives delivered or aust you go get theal?	delivered................................. 1 PICX TKEN UP.............................. 2	$\rightarrow 353$
352	Now far (in kilometers) must you go to get them?	Dr. TO PICK UP COWTRACEPTIVES. \qquad	
353	What is your position or title here?		

aestions 354 and 355 are to be answered by the intervieler after the facility visit is complete.

356	did the imformant seem knouledgeable?	

[^18]section 6. Man: \qquad health cemtre visit

Date: \qquad
if the mealik centre is 30 kiloneters or less abay. it is to be visited. conplete arstions 400 and 602 lecin artival at :ME facility based on your own observations. them find a knonedgeable source at the facility to aksuet tme REMIMIKE QESTIOWS.

COMPLETE VISIT
If ikis facility mas alrendy been visited for a different cluster, record dis cluster maber here: IF THE fACILITY KAS ALREADY gEEN VISITED, A SECOND VISIT IS NOT MEEDED.

400	if this is the first facility visited after the cluster visit record distance frow cluster fran the cooneter.	DISTAKCE FROM CLUSTER.... \square mot first facility visited. \square
401	do you think that the estimate of distance to the facility givey ill the cluster is reasomable?	
402	do you think that the estimate of the time to the facility gIVEM IM THE CLUSTER IS REASOMABLEY	

oussiliows to be asked of staff persow at factility:

No.	OUE Stiows	Cooing categories	SXIP \because
403	In what year did this health sentre open?	YEMR ОРЕКЕD............. $19 \square \square$	
404	Under what outhority is this health centre operatedr	COVERMMEMT............................... 1 PRIVATE.................................... 2 VOLUTARY AGEKCY......................... 3 OTKE: \qquad .4	
406	How asmy beds does this health centre have?	muber of beds........ \square^{\square}	
607	On average, how nany outpatients are seen daily at this facility (Outpotients are peopla seen for preventive care and sick people tho go thane the same day)	magber of daily ©UTPAIEMTS....... \square	
408	Mow many regular staff of the following types does the health centre have? Medical assistants Rural medical aldes Public health nurses Trained miduives MCK aides Auxillary staff (health officers, health attendants, other nurses)	maber of: medical assistants. \qquad \square RURAL MEDICAL AIDES. \qquad \square Mreses. \qquad \square miduives \qquad \square mCh aldes. \qquad \square adxilleny staff. \qquad \square	

[^19]6.1

No.	Questiows	coolmg caitgories	SIP 10
409	Dowe inis facility normally use disposeble needles when giving injections for MCN immuisations?	Yes..	612
410	Is this focillity out now or has it an out of its supply of disposeble needles ot any time in the last 6 monthe?		
411	Does this facility ever reuse disposable needlea?	YES................................. 11 no............................ 2	
412	Does this facility normally use dispossble gloves?		W16
413	Is this fecility out now or has it run out of its supply of disposable gloves at any time in the last 6 months?		
414	What is the method mosi frequently used for the sterilisation of medical instruments (not liners)? (CIRCLE OWE)	ELECTRIC STERILISER.................. 1 AUTOCLAVE................................ 2 STEN PRESSURE STERILISER.......... 3 BOIL OVER KEROSEME STOVE.......... 4 BOIL OVER CHARCOMLNOCO STOVE..... 5 MONE. . OTMER \qquad	-616
415	Kas the facility NOT been able to sterilise medical instruments for ary reason (e.g. equipment broken, no electricity, to fuel) it any time in the last six months?		
416	Does the facillity have the following iteme in working order/ in stock: Ruming water? Electricity Refrigerator? Kerosene? Telephone or radio transmitter? Vehicle? Motorbike? Bicycle? Delivery bed? Delivery kit? Walting aree for momen in labor? Blood benk? Exarinstion couch? Examination light for gynecological examination? IUCD (loop insertion) kit? Weighing sceles for children? Adult welghing scale? Growth cards? timens? Gauze? Cotton wool? Antiseptics? Blood pressure machine? Talquist method for diagnosis of anemia? Wicroscope? AlDS test (Elisa test)?		
617	Do you have an outreach program?	res................................ 1 mo............................ 2	-619
418	"Cw many villages/communities do your regularly visity		
419	Do you receive an EDP kit every month?	res............................. 1 No.......................... 2	

services avaluale al tue fagility:
Wou I mould like to est you about enternal and child health services avallable at this health centre. Ask 0.420 fon ife fiast service. If tuis service is avallable, comtime across ine table, if mot, ask about the mext servica.

service	$\mathbf{4}_{620}$ is (SERVICE) avsilable?	421 How emery days per week is (SERVICE) available?	4622 In that year was (SERvict) first offered here?
1 - Antenatal care	res. wo. \qquad	\square	$19 \square$
2 Dellivery care	res..................... ${ }^{1}$ no.................... ${ }^{\text {a }}$,		191 \square
3 - Postnetal care	Yes.................... ${ }^{1}$ mo.................... 2	\square	$19 \square$
\qquad Child Imanisation sessions		\square	19 \square
Child growth monitoring sessions		\square	$19 \square$

medication avallability at the facility:
Now I would tike to ask you sbout medications and other supplies available at this facility. then 1 have finished, itw need to see the medications you have in stock. ASK 0,423 FOR EACK MEDICATION. IF THE MEDICAIION IS AVAILABLE. ASK Q.42h, If mot

MEDICATIO	$\left\lvert\, \begin{aligned} & 423 \text { ls } \\ & \text { (MEDicAIION) } \\ & \text { avallable now? } \end{aligned}\right.$	464 As any time in the last 6 monthe didy you run out of (MEDICAIION)?	425 Have you ever had (medicaliou)?	626 thy do you not have cmedica YiCu) now (a]	427 MED: AIIOM SEEN/MOT SEEN stats
1 Chloroavine syrup	Yes....... 1 Mo.......2- izs	res................ ${ }^{1}$ wo...............2- 423	YES............ ${ }^{1}$ N0.......... 27	\square	$\begin{aligned} & \text { SEEM......... } 1 \\ & \text { MOT SEEA..... } 2 \end{aligned}$
2 ovinime	Yes......... ${ }^{1}$ wo....... 42S	Yes................. 1 wo...............2-2] 423	YES........... ${ }^{1}$ M0.......... ${ }^{2}$ 423	\square	$\begin{aligned} & \text { SEEX......... } 1 \\ & \text { WOT SEEI.... } 2 \end{aligned}$
3 Penicillin	YES......... wo........ 42S	Yes................. ${ }^{1}$ wo.............. 423	YES........... ${ }^{1}$ W0.......... ${ }^{2}$ 423	\square	$\text { SEEN......... } 1$
4 - Iron tablets		Yes................ ${ }^{1}$ mo............... 423		\square	$\begin{aligned} & \text { SEEM......... } 1 \\ & \text { MOT SEEI.... } 2 \end{aligned}$
5 folicesid		YES................. ${ }^{1}$	YEs............ ${ }^{1}$ N0........... ${ }^{2}$ 423	\square	$\begin{aligned} & \text { SEEN......... } 1 \\ & \text { WOT SEEa.... } 2 \end{aligned}$
6 ORS pockets	YES......... ${ }^{1}$ wo........ 42s		YES............ 1 wo.......... ${ }^{2}$ 423	\square	$\begin{aligned} & \text { SEEN........ } 1 \\ & \text { WOOT SEET.... } \end{aligned}$
7 Condons			YES.......... wo.......... ${ }^{2}$ 427	\square	$\begin{aligned} & \text { SEEM......... } 1 \\ & \text { MOT SEET.... } 2 \end{aligned}$
cooes: [a] insulf Unabl	$\begin{aligned} & \text { ent funds } \\ & \text { get resupply } \end{aligned}$	Not designated t, Out of current munt	$\begin{aligned} & \text { rry }=3 \\ & \text { 's supply }=4 \end{aligned}$	Other	

Mo.	Cussitows	cooimg cateconies	sxip 10
428	Do you have enough spece in this facillity for mCK services?	res................................. ${ }^{\text {i }}$ i mo.............................. ${ }^{2}$	
42	Are imunisutions aviliable for children nown	res.................................. ${ }^{1}$ mo............................. 2	632
430	At any time in the last 6 months have you run out of vaccines?	YEs................................... 11 wo........................... 21	
431	I need to see your supply of vaccines now.	Vaccines seem in refrigerator...... 1 VACCIMES SEEN MOT IM REFRIGERATOR. 2 VACCIXES WOT SEEM..................... 3	
632	Does this facility provide family plaming services?		438
433	What is your position or title here?		456

If the family planning information is detaimed from a second facility, begik duestiowxalre yith o. 634.

636	In what year did this health centre opent	YEAR OPENED............ $19 \square$
435	Under what authority is this health centre operated	COVERLMENT . 1 PRIVATE. 2 VOLUTARY AGEMCY...................... . . 3 OTHER \qquad .4
437	Does the facility have the following items in working order: Runing water? Etectricion Exemination couch? Examination light for gynecological exarination? Blood pressure machine? lucd (loop insertion) kit?	
438	Does the health centre have the following types of staff who are trained in fonily plaming provisions Medical Assistants? Rural Medical Aldes? Nurses? MCN Aides?	
440	Are the following types of staff, if avaitable, trained in IUCD (loop) insertion? Medical Assistents? Rural Redicat Aides? Murses? MCK Aldes?	
661	During an average month, how many women cone to get family plaming for the first tige?	nev Patients.......... \square
462	During an average month, how many women come because they. need more family planning (resupply)?	RESUPPLY PATIENTS..... \square

mo.	OFStiows	coolve catecories	exip to
463	Do you fill out an WCK 3 form (Tasifa ya ahuchurio ya akine mene ne vatoto kwe mezi ou make) regularly		$\rightarrow 465$
446	What do rou do this form?	SEND TO MON............................. 1 SEND TO DISTRICT OFFICER........... 2 SEND TO TOUAL OFfICE.................. 3 KEEP IX flle............................ 4 KOTMING/DOW'T KNOH. \qquad	

COWTRACEPTIVE HETHCD AVAILABIL!TY:
Wow I would like to ask you sbout wich fanity plaming methods are available at this health centre. I must also see the methods when we are finished. ask agout the first methoo. If this methoo is avallable frdithe health cemtre, move acesss the table. If the methoo is mot avallable now, ask o. 450 and then begin agaim yith the next hethoo.

METHCO	465 is (1 ETHCO) available now?	446 How namy doye per week is (ME THCD) aviliable?	467 In what year did you first offer (HE THOD)?	448 is your stock of (METMOO) in date or out of dete?	$\begin{gathered} 649 \text { METMOD } \\ \text { SEEM/MOT SEEM } \\ \text { STATUS } \end{gathered}$	450 How any weeks ago did you run our of (METHCO)? (a)
01 P111	YES..... M0.... 450	\square	$19 \square$	In DATE........... 1 OUT OF DATE..... 2 BOTM............. 3	$\begin{aligned} & \text { SEEM. } 1 \\ & \text { ROT SEEN.... } 2 \end{aligned}$	
02 IUCD (loop)	YEs..... H0.... 650.	\square	$19 \square$	In date $\ldots1$ art of datc..... 2 BOTM........... 3	SEEM........ 1 MOT SEEM... 2	
03 Injection	YES.... ${ }^{1}$ M0..... 450.		$19 \square$	In dare.......... 1 Qut of date..... 2 Both........... 3	SEEM........ 1 MOT SEER... 2	$\square \times 5$.
\qquad Foming tablets/ foed Jelty	$\begin{gathered} \text { YES..... } \\ \text { W0..... } \\ 650 \text { لـ } \end{gathered}$		$19 \square$	In DATE........... 1 QUT OF DATE..... 2 BOTK............... 3	$\begin{aligned} & \text { SEEN......... } 1 \\ & \text { WOT SEEN.... } 2 \end{aligned}$	
06 other specify	$\begin{array}{r}\text { YES.... } \\ \text { NO.... } \\ \hline 650 .\end{array}$	\square	$19 \square$	W, W, $^{\sim}$		

No.	OESTIOMS	COOILIG CaTECORIES Sxip to
651	Do you have your contraceptives delivered or must you go get then?	$\begin{array}{l\|l} \hline \text { DELIVERED.......................... } \\ \text { PICX THEM UP...................... } 2 \end{array} \rightarrow \text { } 853$
452	How far (in kilometers) mast you go to get them?	XM. TO PICX UP COWTRACEPTIVES. \qquad \square
453	that is your position or title here?	

Questiows 456 and 655 are to be ansuered by the interviewer after the facility visit is complete.

456	DID the jmformant seem mulledeablef	Yes.............................. 11 wo.......................... 2	
655	ADDITIOWAL COWMENTS:		

SECIIOM S. Vame \qquad
\qquad
If ime dispersant is 30 EILONETERS OR LESS AWAY, if is TO LE VISITED. COMPLETE OUES? $10 \mathrm{~A} S$ S 500 AND 502 UPOM ARRIVAL AT TME FACILITY LASED ON YON OW OBSERVATIONS. TMEM FINO A KHONEOGEAELE SORCE AT INE PACILITY TO ANSWER TME REMAIMIVG OESTIONS.

If TMIS FACILITY KAS ALREADY BEEN VISITED FOR A DIFFEREMI CLUSTER, RECORD OHS CLUSTER mmBER hERE: If TME FACILITY MAS ALREADY OEEM VISITED. A SECOND VISIT IS MOI NEEDEO.

500	if this is the first facility visited after the cluster visif RECORD DISTAHCE FRON CLUSTER FROM TME COONETER.	DISTAFEE FRON CLUSTER.... \square MOT FIRST FACILITY VISITEO.......OS
501	Do you taimk that the estimate of distamce to the facility given il the cluster is reasomabley	REASONABLE . OVERESTIMATED. 2 UDDERESTIMTED. 3
502	Do rou thimk that the estimate of the time to the pacility given il the cluster is reasomable?	REASONABLE . 2 OVERESTIMATED. 3

QUESTIOMS TO EE ASKED OF STAFF PERSON AT FACILITY:

no.	QUESTIONS	COOING CATECORIES	Sxip 10
503	In what year did this dispensary open?	YEAR OPENED.............. 19 ■	
506	Under what authority is this dispensary opersted?	COVERKAENT. 1 PRIVATE. 2 VOLUNTARY ACEMCY. 3 DTHER \qquad .	
506	How many beds does this dispensary have?	Muger of geds........ \square^{\square}	
507	On average, how mary outpatients are seen daily ot this facility? (Outpstients are people seen for preventive care and sick people tho go home the same day)	Mumer OF DAILY OUTPATIEMTS.......	
508	How meny regular staff of the following types does the dispensary have? Rural medical aides Public health nurset Trained midriven MCK aides Auxillary staff (health officers, health attendants, other murses)	MUABER OF: RURAL MEDICAL AIDES....... \square MORES \qquad \square MIOUIVES \qquad \square MCH AIDES \qquad \square AJXILLARY STAFF \qquad \square	

[^20]| no. | Custiows | COOING CATECORIES | sxip r |
| :---: | :---: | :---: | :---: |
| 509 | Doss this faclility normally use dispossble needles then givine injuctions? | res....................................... 1 no.................................... 2 | $\rightarrow 512$ |
| 510 | Is this facillity out now or has it run out of lis supply of disposable needles at any time in the last 6 months? | | |
| 511 | Does this facility ever reuse disposable needles? | | |
| 512 | Docs this facllity normally use disposable gloves? | res.................................. 1 no............................. 2 | -516 |
| 513 | Is this facillity out now or has it run out of its supply of disposable gloves at any time in the last 6 months? | | |
| 514 | What is the method mosi frequently used for the sterilisation of medical instrmments (not linens)?
 (Circle OUE) | electric sieriliser................... 1
 NUTOCLAVE................................. . 2
 STEM PRESSURE STERILISER........... 3
 BOIL OVER KEROSENE STOVE.......... . 4
 BOIL OVER CKARCOAL/NOOO STOVE..... 5
 HOWE . 6
 OTKER \qquad | $\rightarrow 516$ |
| 515 | Was the facility wot been able to sterilise medical instruments for any reason (e.g. equipment broken, no electricity, no fuel) of amy time in the last six months? | | |
| 516 | Does the facility have the following items in working order/ in stock:
 Ruming water?
 Electricion
 Refrigerator?
 Kerosene?
 Bicycle?
 Delivery bed?
 Delivery kit?
 Wationg are for momen in labor?
 Exarinetion couch?
 Examination light for grnecological examination?
 IUCD (loop insertion) kit?
 Heighing scales for childrent
 Adult weighing scale?
 Growth cards?
 Linens?
 Gauze?
 Cotton wool?
 Antiseptics?
 Blood pressure machine?
 ralquist method for diagnosis of anemia? | | |
| 517 | Do you have an outreach program? | $\begin{aligned} & \text { YES. } 1 \\ & \text { no. } 2 \end{aligned}$ | $\rightarrow 519$ |
| 518 | How many villages/commenties do you regularly visit? | MLMEER of SITES................. $\square \square$ | |
| 519 | Do you receive on EDP kit every month? | $\begin{aligned} & \text { res. } 1 \\ & \text { mo. } 2 \end{aligned}$ | |
| 519a | Where do you refer difficult cases (potients the dispensary is unoble to trest)? | health cemtre................................ 1
 HOSPITAL. 2
 OOW't REfER PATIENTS.................. 3
 OTHER \qquad .6 | |

services available at ine facility:
You 1 would like to ask you about miernal and child health services available at this dispensary. Ask 0.520 foe tis sirst service. If this service is avalurle, comilnue across the table, if wot, ask abait the mext service.

servict	\|520 is (seprice) available?	(521 p.ow mary day per week is (SERVICE) avallable?	1522 in that year was (EERVICE) first offered here?
1 Antenatal care		\square	19 \square
2 dellivery care	res..................... 1 no................... 21		19 \square
3 Postnatal care		\square	19 \square
sessions	YEs......................... 1 no.............................		19 \square
Child growth monitoring sessions		\square	$19 \square$

medication availability at the facility:
Now 1 would like to ask you about medications avallable at this facility. then 1 have finished, t will need to see the medicat jons you have in stock. ASK 0.523 FOR EACH MEDICATION. IF TKE MEDICATION IS AVAILABLE, ASK 0.524, if WOI ASK 0.525. If the medication has at some time been avallable, ask 0.526 . If 0.523 is yes, record uhether the medication is seen or mot.

\begin{tabular}{|c|c|c|c|c|c|}
\hline medicatiom \& $$
\left\{\begin{array}{l}
523 \text { Is } \\
\text { (MEDICATIOW) } \\
\text { availsble now? }
\end{array}\right.
$$ \& 1524 At ary time in the last 6 months did you run out of (MEDICATION)? \& 525 Have you ever
hed (KEDICAIIOW)? \& |526 thy do you not have (MEDICA. Tlow) now (a) \& 527 MEDICATIOM
SEEM/MOT SEEM
STATUS

\hline 1 Chlorocuine syrup \& res....... 1
no......23 ${ }^{2}$
S2S \& \& \& \square \& $$
\begin{aligned}
& \text { sexn } 1 \\
& \text { Mot SEEM... } 2
\end{aligned}
$$

\hline 3 Penicillin \& YES.........
wo........
52s 4 \& \& Yes............. ${ }^{1}$
wo............2.
S23 \& \& $$
\begin{aligned}
& \text { sERU } 1 \\
& \text { Mor SEEW. . . } 2
\end{aligned}
$$

\hline 4 I Iron tsblets \& res.........
No........
S2S \& \& \& \& $$
\begin{aligned}
& \text { stin } 1 \\
& \text { Mot SEEN.... } 2
\end{aligned}
$$

\hline S Follic scid \& Yes......... ${ }^{1}$
wo........
52s \& \& \& \& $$
\begin{aligned}
& \text { SEEM. } 1 \\
& \text { WOT SEEM. . . } 2
\end{aligned}
$$

\hline 6 ORS pockets \& \& \& \& \square \& $$
\begin{aligned}
& \text { sem } 1 \\
& \text { Wot SEEN. . . } 2
\end{aligned}
$$

\hline 7 Condone \& res.........
wo........

525 \& \& \& \square \& sern 1
mot SEx... 2

\hline \multicolumn{6}{|l|}{}

\hline
\end{tabular}

Mo.	Qustiows	COOIMG CATECORIES	sxip re
528	Do you have enough spece in thls facility for MCH services?	Yes..	
529	Are immisations avallable for children now?	YEs...	$\rightarrow 532$
530	At ary time in the last 6 months have you run out of vaccines?		
531	I need to see your supply of vaccines now.	VACCIMES SEEM IN REfRIGERATOR...... 1 VACCIMES SEEN MOT IM REFRIGERATOA. 2 VACCIKES MOT SEEM...................... 3	
532	Does this facility provide family plaming services?	YES.. 2	\rightarrow 538
533	What is your position or ifite here?	-	\rightarrow 586

If the family planning information is dotained fron a second facility, gegin ouestiownaire with o.sk.

534	In what year did this dispensary open?	Year opened............ $19 \square \square$
535	Under what withority is this dispensary operated	GOVERNMEMT.............................. . 1 PRIVATE................................... 2 votumtary acemcy. 3 OTMER. \qquad .6
537	Does the facillity have the following items in working order: Ruming vater? Electricity Examination couch? Examination light for gynecological examination? stood pressure machine? lucD (loop insertion) kit?	
538	Does the dispensary have the following types of staff who are trained in fanily plaming provision? Rural Kedical aides? Murses? MCM Aides? Miduives?	
540	Are the following types of staff, if available, trained in IUCD (loop) insertion? Rural Medical Aides? Murses? MCM Aides?	
541	During on average month, how many women come to get family plaming for the first time?	NEW PAIIENTS......... \square
542	During an average month, how many women come because they need more family plaming (resupply)?	RESUPPLY PAITENTS..... \square

Mo.	arsilows	Coolmg cateconies	skip 10
543	Do you fill out an MCN 3 fore (Tesrifa ya mahuturio yo akine meme na watoto kwe mezi ou maka; regularly	$\begin{aligned} & \text { res. } 1 \\ & \text { mo. } 2 \end{aligned}$	545
544	that do you do this foral		

comiraceptive methoo availability:
Mow I would like to ask you about wich family plarning methods are available at this dispensary. I mast also see the bethods when we are finished. ASK ABOUT THE FIRST METMCO. IF THIS KETMCD is AVAILCLE fROM THE DISPENSARY, MOVE ACROSS the table. If the methoo is mot available mol, ask 9.550 and then begin again with ine next meinco.

	METMOD	565 is (METMCD) available now?	546 How eny days per week is (METHCO) avallable?	547 in that year did you first offer (METHOO)?	$\left\|\begin{array}{c}568 \\ \text { It your atock } \\ \text { of (KETMOD) in date } \\ \text { or out of date? }\end{array}\right\|$	$\left\{\begin{array}{c} \text { S69 WETHCD } \\ \text { SEEM/MOT SEEM } \\ \text { STATUS } \end{array}\right.$	550 how mery weeks ogo did you mun art of (KETHOO)? (a)
01	Pill	res..... M0..... 550	\square	$19 \square$	IM DATE.......... 1 OUT OF DATE..... BOTH............ 3	SEEM........ WOT SEEN. . 2	\square Uus.
02	1UCD (loop)	YES..... W0.... s50.]	\square	$19 \square$	IM DATE.......... 1 QT OF DATE..... BOTH........... 3	$\begin{aligned} & \text { SEER } 1 \\ & \text { WOT SEEX. . } 2 \end{aligned}$	Tuxs.
03	injection	res..... mo... 550.	\square	$19 \square$	IM DATE.......... 1 Qut of Date..... BOTH............	$\begin{aligned} & \text { SEEN......... } \\ & \text { MOT SEEN. . } 2 \end{aligned}$	\square uns.
06	Foaning tablets. fome jelly	YES.....1 m0....2 550	\square	$19 \square$		SEEM........ 1	\square Jus.
$\frac{\infty}{\text { spe }}$		YES.....1 W0.... S50._	\square	$19 \square$			
coots: [a] 97 - Mever stocked method							
No.	OUEStiows				cooing cateconies		Sxif to
551	Do you have your contraceptives delivered or aust you go get them?						
552	How for (in kiloseters) mast you go to get them				Dr. To pict Up COMTRACEPTIVES.............		
553	What is your position or title here?						

Questions 556 and 555 are 10 be ansuered gy the interviewer after the facility visit is complete.

554	did the inforkant seen madinedeable?	Yes............................... . 11 no.......................... 2	
555	ADOITIONAL CONEMTS:		

 ARRIVAL AT TME FACILITY LASED ON YOUR OW OASERVATIONS. THEM FIMD A KNOAEDGEABLE SOURCE AY TME FACILITY TO AMSMER IME REMAIIING OUESTIONS.

IF THIS PACILITY KAS ALREADY GEEM VISITED FOR A DIFFEREMT CLUSTER, RECORD OHS CLUSIER MABER MERE: If THE FACILITY MAS ALREADY BEEM VISITED, A SECOND VISIT IS MOT REEDED.

COMPLETE VISIT

600	If this is the first facility visited after the cluster visit RECORD DISTANCE FRON CLUSTER FRON THE COOMETER.	DISTANCE FROR CLUSTER.... \square HOT FIRST FACILITY VISIIED.......95
601	do you think that the estimate of distance to the facility given in the cluster is reasomable?	REASONABSE . OVERESTIMATE 2 UNDERESTIMTED. 3
602	do you think fhat the estimate of the time to the facility given in the cluster is reasowable?	

OUESTIONS TO BE ASKED OF STAFF PERSON AT FACILITY:

MO.	OUESTIOWS	Conlmg Categories	SKIP TO
603	How many hours per day is the pharmacy open?	HORS PER DAY.............. \square	
604	How mamy days per week is the pharmacy open?	DAYS PER LEEK.	

medication availlagility at the facility:
Mow I would like to ask you about medications available at this facility. ASK o. 605 for EACH MEDICATIOM. IF TME mEDICA.
TION IS AVAILABLE, ASK 0.606, IF NOT ASK Q.607. IF THE MEDICATION HAS AT SOME TIME BEEM AVAILABLE, ASK O.608.

\begin{tabular}{|c|c|c|c|c|}
\hline nedication \& \[
\begin{array}{|l}
605 \text { is (MEDICAIION) } \\
\text { svailable now? }
\end{array}
\] \& 606 In the last 6 months have you run out of (MEDICATION)? \& 607 kowe you ever had (MEDICAIION)? \& 608 thy do you not have (MEDICATIOW) now? (a) \\
\hline 1 Chloroquine syrup \& \& \& \begin{tabular}{|r|r|}
res............ \\
w.......... 2 \\
605
\end{tabular} \& \(\square\) \\
\hline 2 Quinine \& \& YES .
m0. \& \& \(\square\) \\
\hline 3 Penicillin \& \& \& YES............. 1
m........... 2
605 \& \(\square\) \\
\hline 4 Iron tablets \& \& \& res............. 1
m............ 2

605 \& \square

\hline 5 Folic acid \& \& VES .
M0. \& res............. 1
W........... 2

605 \& \square

\hline 6 ORS packets \& $Y E S ~$ \& \& \& \square

\hline 7 Condons \& YES
NO.
607 \& YES .
N0.
609
609 \& YES............ 1
M0........... 2
609 \& \square

\hline COOES: [a] Insuffic \& $$
\begin{aligned}
& \text { ient funds }=1 \\
& \text { o get resupoly }=2
\end{aligned}
$$ \& ```

Not designated to carry
Not interes:ed in car-ying
6.1
302

``` & \[
\begin{aligned}
& =3 \\
& =6
\end{aligned}
\] & Other \(=5\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Mo. & OUESTIOWS & Coolve categories & Stip 10 \\
\hline 609 & In what year did the pharmecy open? & YEAR OPEMED............ \(19 \square \square\) & \\
\hline 610 & Is there a trained pharnecise available? & YEs....................................... 1
mo................................. 2 & \\
\hline 611 & Does the fxillity have the following itens in working order? Ruming vater? Electricity Qefrigerator? &  & \\
\hline 612 & Does this pharmacy carry family plaming methods? &  & \(\rightarrow 617\) \\
\hline 613 & What is your position or titie here? & - & \(\rightarrow 62\) \\
\hline \multicolumn{4}{|c|}{If the fmily planimg information is obiained from a second facility, begim ouestionhaire with o.616.} \\
\hline мо. & OUESTIOWS & cooing caregories & ScIP 10 \\
\hline 616 & How many hours per week is the pharmacy opent & HOURS PER WEEK............ \(\square^{\square}\) & \\
\hline 615 & How many days per week is the pharmacy apen? & DAYS PER LEEK................. \(\square\) & \\
\hline 616 & In what year did this pharmacy open? & YEAR OPENED................. 10 ■ & \\
\hline
\end{tabular}

COWTRACEPTIVE METHCO AVAILABILITY
How 1 mould like to ask you about wich fomily plaming methods are avallable at thia pharmacy. ASK ABOUT YME first methoo.
IF imis metmoo is available from the pharmacy, ask 0.618, if wit, ask 0.619. If COwtraceptive has been available, age 0.620 .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & ME THCO & 617 Is (METHOD) available now? & 618 In the last 6 monthe have you rin aut of (METHOD)? & 619 Have you ever
hod (METHOD)? & 620 Why do you not haw (METMOD) now (a) \\
\hline 01 & Pill & YES............ \({ }^{1}\)
wo...........
619 & YES.................... \({ }^{1}\)
wo.................. \({ }^{217}\) - &  & \(\square\) \\
\hline & IUCD ( 1000 ) &  &  &  & \(\square\) \\
\hline & foming tablets/ foen/ jelly &  &  & Yes............
wo...........
817 & \(\square\) \\
\hline COEE & \multicolumn{2}{|l|}{[a] Insufficient funds \(=1\) Unable to get resupply \(=2\)} & Not designated to carry not interested in carrying & - 3 & other - 5 \\
\hline \%0. & \multicolumn{2}{|l|}{CUESTIONS} & & CDOIMG CATEGORIES & ES \\
\hline 621 & \multicolumn{2}{|l|}{What is your position or citle here?} & & & \\
\hline
\end{tabular}

QUEST!'ws 622 to 623 are to be ansuered ay the interviewer after the facility visit is completed.
\begin{tabular}{|c|c|}
\hline 022 & DID the imformant seem knowledgeable? \\
\hline 623 & MODITIOMA, COMMENTS: \\
\hline
\end{tabular}
section 7. Man:

\section*{PRIVATE DOCTOR VISIT DATE:}
\(\qquad\)
If the privale docidors practice is 30 kiloneters or less away, me/Sme is to ie visited. complete destions 700 to 702
 REMAIMIKG OLESTIOWS.

COMPLETE VISIF
If TKIS FACILITY WAS ALREADT BEEM VISITED FOR A DIFfEREMT CLUSTER, RECORD DKS CLUSTER MURER MERE: If the facility mas alrenot beem visiled, a second visit is not meeded.

\begin{tabular}{|c|c|c|}
\hline 700 & If this is the first facility visited afier fhe cluster visit record distance from cluster frow the oometer. & DISTANCE fRON CLUSTER.... \(\square\) mot first facility vislied. \(\qquad\) \\
\hline 701 & D you think that the estimate of distance to the facility givex il the cluster is reasonable? &  \\
\hline 702 & do you think that the estimate of the time to the facility given ill the cluster is reasomable? &  \\
\hline
\end{tabular}

OUESTIONS TO BE ASKED of staff person at facility:
\begin{tabular}{|c|c|c|c|}
\hline No. & QuEstiows & CODING CATEGORIES & SkIP is \\
\hline 703 & Approxirately how many patients does the doctor (do you) see at this practice each day & mumber of patients........ \(\square\) & \\
\hline 706 & How mary hours per week is the doctor (are you) available to see patients at this location? & HOURS PER VEEK........... \(\square\) & \\
\hline 705 & How many dari per week is the doctor (are you) available to see patients at this location? & Days per veek................. \(\square\) & \\
\hline 706 & In what year did the doctor (you) first begin to see patients at this location? & YEAR.................... \(19 \square \square\) & \\
\hline 707 & Does this facility normally use disposable needles when giving injections? & \begin{tabular}{l}
res........................................ 1 \\
wo.................................................... . 2
\end{tabular} & 710 \\
\hline 708 & Is this facility out now or has it run out of its supply of dispossble needles at any time in the last 6 months? &  & \\
\hline 709 & Does this facility ever reuse disposable needles? &  & \\
\hline 710 & What is the methad most frequently used for the sterilisation of medical instruments? & \begin{tabular}{l}
ELECTRIC STERILISER................... 1 AUTOCLAVE. \\
Steam pressure steriliser. BOIL OVER KEROSEME STOVE. . BOIL OVER CHABCOAL 1000 other \(\qquad\) nowe.
\end{tabular} & 712 \\
\hline 711 & Has the facility wOT been able to sterilise instruments for some reason (e.g. equipment broken, no electricity, no fuel) at any time in the last six sonths? &  & \\
\hline 712 & \begin{tabular}{l}
Does the forility have the following items: \\
Ruming water? \\
Electricitr? \\
Refrigerator? \\
Examination couch? \\
Examination light for gynecological examination? \\
Weighing scales for children? \\
Blood pressure machine? \\
IUCD (locp insertion) kir? \\
Minilap kit for tubal ligation?
\end{tabular} &  & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline mo. & OUESIIOWS & cooimg catemotes & Sxip 10 \\
\hline 713 & \begin{tabular}{l}
Does the doctor (00 you) see patients routinely at this locstion for: \\
Antenatal care? \\
Dellvery care? \\
Postnatal care? \\
Child grouth monitoring?
\end{tabular} &  & \\
\hline 716 & Does the doctor (00 you) dispense ans packets? &  & \\
\hline 715 & Does the doctor ( 00 you) give vaccines? & Yes.............................. 11
wo........................ 2 & \(\rightarrow 717\) \\
\hline 716 & At ary time in the last six months have you run out of vaccines? &  & \\
\hline 717 & Are condoms avallable here? &  & - 719 \\
\hline 718 & At amy time in the last six months have you run out of condons? & YEs. ..................................................... 2 & \\
\hline 719 & Does this doctor (Do you) provide fanily plarning services? &  & \(\rightarrow 724\) \\
\hline 720 & What is your position or title here? & & \(\rightarrow 735\) \\
\hline
\end{tabular}

If the fanily plankikg informition is catained from a second ooctor, begik auestiowuare vith o. 721 .
\begin{tabular}{|c|c|c|}
\hline 721 & Now eary houri per week is the doctor (are you) available to see petients at this locetion? & HOURS PER VEEX............. \\
\hline 722 & How many days per week is the doctor (are you) available to see patients at this location? & DAYS PER WEEK.................. \\
\hline 72 & In what year did the doctor (you) first begin to see patients at this location? & YEAR................ \(19 \square\) \\
\hline 726 & 1s the doctor (Are you) trained in contraceptive sterilisation procedures (tubal ligation/vasectony)? & YEs............................. 11
mo.......................... 2 \\
\hline 725 & 1s the doctor (are you) trained in IUCD (loop) insertion? & Yes............................. 11
wo.......................... 2 \\
\hline
\end{tabular}

COMENTS:

COMTMCAPIVE METKCO AVAILABILITY:
Wor 1 would like to ask you sbout which fanily plaming methods are available from this doctor. ASK asout the sirst wion.
 eegir acaim yiti the next methoo.
\begin{tabular}{|c|c|c|c|c|c|}
\hline K¢ 1 1 O & 726 It (MEIHOO) ovailable now? & \(\left|\begin{array}{c}727 \\ \text { per wowk nany days } \\ \text { (KETMOD) available? }\end{array}\right|\) & 788 in what year did you first offer (METHCO)? & 729 is your stock of (METHCO) in dete or out of date? & 730 hou mary meeks ago did you nr ous out of (MEINO:! (a) \\
\hline 08 Pill & \[
\begin{array}{r}
\text { YEs.......... } \\
\text { wo.......... } \\
730 \quad 4
\end{array}
\] & \(\square\) & 19 & \[
\begin{aligned}
& \text { In DATE........... } 1 \\
& \text { OUI OF DATE..... } 2 \\
& \text { BOTH............... } 3
\end{aligned}
\] & \(\square\) Wus. \\
\hline 02 IUCD (loop) & YES......... 1
N0........ 2
730.1 & \(\square\) & \(19 \square\) & IM DATE.......... 1
OUT OF DAIE..... 2
BOTH............ 3 & \(\square \mathrm{Las}\). \\
\hline 03 Injection &  & \(\square\) & \(19 \square\) & IM DAIE........... 1
OTT OF DATE...... 2
BOTH................ 3 & \(\square\) - \\
\hline \(\qquad\) Fosming tablets/ foand jelly & Yes.........
N0.......
730 & \(\square\) & \(10 \square\) & \[
\begin{aligned}
& \text { In DATE........... } \\
& \text { QT OF DATE...... } \\
& \text { BOTM................ }
\end{aligned}
\] &  \\
\hline \(\infty \quad\) other &  &  & \(19 \square\) &  &  \\
\hline
\end{tabular}

COOES: [a] 97 . Kever stocked method


OUEStIOws T3S 10 T36 are to be amsuered by the imterviever after the facility visiy is completed.
\begin{tabular}{|c|c|c|c|}
\hline 735 & did the informant seem knouledgeable? & Yes............................... 1 & \\
\hline 736 & ADOIIIONAL CONHENTS: & & \\
\hline
\end{tabular}```


[^0]:    NA = Not applicable

[^1]:    ${ }^{1}$ These results are not entirely consistent with the results presented in Table 4.1, where, based on a different question, it was shown that 89 percent of women who know a method know a source. No explanation for this difference can be given.

[^2]:    ${ }^{1}$ Includes 3 missing cases

[^3]:    ${ }^{1}$ Wants next birth within 2 years
    ${ }^{2}$ Wants to delay next birth for 2 or more years

[^4]:    Note: Rates shown in parentheses are based on $25-49$ women, whereas an asterisk means the rate is based on fewer than

[^5]:    ${ }^{1}$ Using the jackknife model, sampling errors can be calculated for mortality estimates, which take into account the number of clusters of the TDHS. For infant mortality, the 95 percent confidence interval is 80.1-103.1 per 1,000 live births; the corresponding interval for under-five mortality is $128.1-154.3$ per 1,000 live births.

[^6]:    ${ }^{2}$ This is because women $20-24$ are on average 22.5 years at the time of the survey, so an important part of their births occur when these women are very young. Infant and child mortality for births to such women is much higher, as also shown by the direct estimates of mortality by matemal age in Table 7.3.

[^7]:    ${ }^{1}$ The dropout rate is calculated as (DPT3-DPT1) / DPT1 * $100 \%$.

[^8]:    Note: Figures are for children born in the period $1-59$ months preceding the survey. Figures in parentheses are based on a small number of cases. An asterisk means the rate is based on fewer than 25 women and has been suppressed ${ }^{1}$ Includes health clinic, health cenire, hospital, private doctor

[^9]:    Note: Figures are for children born in the period $1-59$ months preceding the survey.
    ${ }^{1}$ Includes health clinic, health centre, hospital, private doctor

[^10]:    Note: Figures are for children bom in the period 1-59 months preceding the survey.
    ${ }^{2}$ Includes diarthoea in the past 24 hours

[^11]:    ${ }^{1}$ Includes current pregnancy
    ${ }^{2}$ Want next birth within 2 years
    ${ }^{3}$ Want to delay next birth for 2 or more years

[^12]:    ${ }^{1}$ When asked to define type of union, each partner responded differently.

[^13]:    ${ }^{1}$ The TDHS included 357 clusters. No service availability data were available for eight clusters.

[^14]:    ${ }^{1}$ Both year and age missing
    ${ }^{2}$ Child not measured

[^15]:     and zamzibar. small urban areas are all other tonns.

[^16]:    - recommemoed hone fluid made fron sugar, salt ano yater amo/or cereal or thim porrioge.

[^17]:    * O. M119 LARGE URBAN AREAS ARE MANZA, ARUSMA, MOROCNRO, DCOOMA, MOSMI, TANGA, IRINCA, MBEYA, TABDRA AMO ZAMzIBAR. SMALL UREAN AREAS ARE ALL OTMER TOWNS.

[^18]:    355 NODIT:SKAL COMUENTS:

[^19]:    COMENTS:

[^20]:    COMEMTS:

